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Asymptotic Stability of 2-D

Positive Linear Systems with

Orthogonal Initial States
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Abstract This paper deals with the asymptotic stability of
2-D positive linear systems with orthogonal initial states. Dif-
ferent from the 1-D systems, the asymptotic stability of 2-D
systems with orthogonal initial states xxx(i, 0), xxx(0, j) (Fornasini-
Marchesini (FM) model) or xxxv(i, 0), xxxh(0, j) (Roesser model) is
strictly dependent on proper boundary conditions. Firstly, an
asymptotic stability criterion for 2-D positive FM first model
is presented by making initial states xxx(i, 0), xxx(0, j) absolutely
convergent. Then, a similar result is also given for 2-D posi-
tive Roesser model with any absolutely convergent initial states
xxxv(i, 0), xxxh(0, j). Finally, two examples are given to show the ef-
fectiveness of these criteria and to demonstrate the convergence
of the trajectories by making exponentially convergent initial
states.
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The theory (especially the stability theory) of 2-D
discrete-time dynamic systems, has attracted great atten-
tion for more than two decades, due to its wide existence in
many practical applications, such as image data processing
and transmission, thermal processes, gas absorption and
water stream heating, etc[1−2]. Especially, 2-D dynami-
cal systems described by the Roesser model[3−4] and the
FM model[5−10], have been deeply and widely investigated.
Furthermore, the theory and application of 2-D positive
systems also have been paid great attention[11]. For exam-
ple, the asymptotic stability of 2-D positive Roesser model
was investigated in [12−13]. A 2-D positive linear system
with delay was analyzed in [14−15]. 2-D positive hybrid
linear system and 2-D positive continuous-discrete linear
system were also deeply investigated, such as in [16−17].

For 2-D linear systems with any diagonal initial states
xxx(i,−i), ∀ i ∈ Z, sufficient and necessary conditions of
asymptotic stability have been established with the form
of 2-D characteristic polynomial (see e.g., Theorem 1 in
[18] for Roesser model and Proposition 1 in [5] for FM
model). However, these sufficient and necessary conditions
do not hold for any orthogonal initial states xxx(i, 0), xxx(0, j)
(or xxxv(i, 0), xxxh(0, j)). For example, for the 2-D FM first
model xxx(i+1, j+1) = A0xxx(i, j)+A1xxx(i+1, j)+A2xxx(i, j+1),
we can see xxx(i+1, 1) = A0xxx(i, 0)+A1xxx(i+1, 0)+A2xxx(i, 1).
Assume that xxx(i, 0) and xxx(i, 1) are convergent with respect
to i. Then, we have xxx(∞, 1) = (In−A2)

−1(A0+A1)xxx(∞, 0).
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Clearly, we almost cannot get xxx(i, 1) approaches zero for
any initial states xxx(i, 0) which implies the asymptotic sta-
bility almost cannot hold for any initial states xxx(i, 0),
xxx(0, j). This is very different with the asymptotic sta-
bility of 1-D systems which do not depend on the ini-
tial state. Furthermore, for many 2-D systems and their
engineering applications (e.g., the 2-D iterative learning
control model introduced in [4]), the orthogonal initial
states xxx(i, 0), xxx(0, j) (or xxxv(i, 0), xxxh(0, j)) are most widely
used. Therefore, it is very interesting and necessary to re-
search that under which initial conditions we can obtain the
asymptotic stability of 2-D systems with orthogonal initial
states.

The aim of this paper is to obtain asymptotic stabil-
ity criteria for 2-D positive linear systems with orthog-
onal initial states. The organization of this paper is as
follows. In Section 1, an asymptotic stability criterion is
given for 2-D positive FM first model with absolutely con-
vergent initial states xxx(i, 0), xxx(0, j). In Section 2, for 2-D
positive Roesser model with absolutely convergent initial
states xxxv(i, 0), xxxh(0, j), an asymptotic stability criterion
is also established. In Section 3, two numerical examples
are presented to validate the effectiveness of the proposed
stability criteria and boundary conditions.

Notations. Let Rn denote the n-dimensional Euclidean
space, Rn

+ the set of all n-dimensional real vectors with
nonnegative integers, Rn×m the set of all n ×m real ma-
trices, Rn×m

+ the set of all n ×m real matrices with non-
negative elements, Z the set of all integers, Z+ the set of
all nonnegative integers, In the n × n identity matrix, | · |
the usual Euclidean norm and ρ(·) the spectral radius.

1 2-D positive FM first model
Consider the following 2-D FM first model:

xxx(i + 1, j + 1) = A0xxx(i, j) + A1xxx(i + 1, j)+

A2xxx(i, j + 1) (1)

where xxx ∈ Rn is the state, and A0, A1, A2 ∈ Rn×n are the
system matrices.

Definition 1. The 2-D FM first model (1) is called
positive if xxx(i, j) ∈ Rn

+, ∀ i, j ∈ Z+ for any orthogonal
initial states xxx(i, 0), xxx(0, j) ∈ Rn

+, ∀ i, j ∈ Z+.
Definition 2. The 2-D FM first model (1) is asymptoti-

cally stable if assuming the orthogonal initial states xxx(i, 0),
xxx(0, j), ∀ i, j ≥ 0 are finite, limi+j→∞ |xxx(i, j)| = 0.

Lemma 1 (see Theorem 5 in [14]). The 2-D FM first
model (1) is positive if and only if

Ak ∈ Rn×n
+ , k = 0, 1, 2 (2)

Theorem 1. The 2-D positive FM first model (1) is
asymptotically stable if

ρ(A1) < 1, ρ[(In −A1)
−1(A0 + A2)] < 1 (3)

ρ(A2) < 1, ρ[(In −A2)
−1(A0 + A1)] < 1 (4)

and the orthogonal initial states are absolutely convergent,
i.e.,

∞∑
i=0

xxx(i, 0) < ∞,

∞∑
j=0

xxx(0, j) < ∞ (5)

Proof. First, we need to prove limj→∞ xxx(i, j) < ∞, ∀ i
∈ Z+. Note that xxx(i+1, j +1) = A0x(i, j)+A1xxx(i+1, j)+
A2xxx(i, j + 1). Then, we have
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xxx(1, j + 1) = A1xxx(1, j) + [A0xxx(0, j) + A2xxx(0, j + 1)] (6)

It implies that limj→∞ xxx(1, j) < ∞, if ρ(A1) < ∞ and
xxx(0, j) < ∞, ∀ j ∈ Z+. Continuing this procedure, we can
obtain that limj→∞ xxx(i, j) < ∞, ∀ i ∈ Z+.

Furthermore, for any integer q > 0, we have

q∑
j=0

xxx(i + 1, j + 1) = A0

q∑
j=0

xxx(i, j)+

A1

q∑
j=0

xxx(i + 1, j) + A2

q∑
j=0

xxx(i, j + 1)

which can be rewritten as

(In −A1)

q+1∑
j=1

xxx(i + 1, j) = (A0 + A2)×

q+1∑
j=1

xxx(i, j) + A1(xxx(i + 1, 0)− xxx(i + 1, q + 1)) +

A0((xxx(i, 0)− xxx(i, q + 1)) (7)

Let q →∞, G = (In−A1)
−1(A0+A2), H = (In−A1)

−1,
Y (i) =

∑∞
j=1 x(i, j), U(i) = A0xxx(i, 0) + A1xxx(i + 1, 0) +

A0xxx(i,∞) + A1xxx(i + 1,∞). Then, (7) can be rewritten as

Y (i + 1) = GY (i) + HU(i) (8)

Note that U(i) < ∞, ∀ i ∈ Z+. Then, from 1-D BIBO
stability theory, it follows that

∞∑
j=1

xxx(i, j) < ∞, ∀ i ∈ Z+ (9)

if ρ(G) < 1 and
∑∞

j=0 xxx(0, j) < ∞. It implies

lim
j→∞

xxx(i, j) = 0, ∀ i ∈ Z+ (10)

since xxx(i, j) ∈ Rn
+, ∀ i, j ∈ Z+.

Similarly, we can also have

lim
i→∞

xxx(i, j) = 0, ∀ j ∈ Z+

if ρ(A2) < 1, ρ[(In−A2)
−1(A0 +A1)] < 1 and

∑∞
i=0 xxx(i, 0)

< ∞. ¤
Remark 1. In [19−20], sufficient and necessary con-

ditions for asymptotic stability of 2-D positive FM model
are investigated. For example, the sufficient and necessary
condition ρ(A0 +A1 +A2) < 1 was introduced for 2-D posi-
tive FM first model (1). However, these conditions are only
available for any initial states xxx(i,−i) rather than xxx(i, 0),
xxx(0, j), since the conditions are essentially established on
the basis of Proposition 1 in [5] which holds only for any
initial states xxx(i,−i).

2 2-D positive Roesser model
Now, let us consider the following 2-D Roesser model
[

xxxh(i + 1, j)
xxxv(i, j + 1)

]
=

[
A11 A12

A21 A22

] [
xxxh(i, j)
xxxv(i, j)

]
(11)

where xxx =

[
xxxh

xxxv

]
∈ Rn is the state, and xxxh ∈ Rn1 , xxxv

∈ Rn2 , n1 + n2 = n represent the horizontal and verti-

cal states, respectively; A =

[
A11 A12

A21 A22

]
is the system

matrix with the submatrices Aij , i, j = 1, 2 of appropriate
dimensions.

Definition 3. The 2-D Roesser model (11) is called
positive if xxx(i, j) ∈ Rn

+, ∀ i, j ∈ Z+ for any orthogonal

initial states xxxv(i, 0), xxxh(0, j) ∈ Rn
+, ∀ i, j ∈ Z+.

Definition 4. The 2-D Roesser model (11) is asymptoti-
cally stable if assuming the orthogonal initial states xxxv(i, 0),
xxxh(0, j), ∀ i, j ≥ 0 are finite, limi+j→∞ |xxx(i, j)| = 0.

Lemma 2 (see Theorem 6 in [14]). The 2-D Roesser
model (11) is positive if and only if

[
A11 A12

A21 A22

]
∈ Rn×n

+ (12)

Theorem 2. The 2-D positive Roesser model (11) is
asymptotically stable if

ρ(A22) < 1, ρ[A11 + A12(In2 −A22)
−1A21] < 1 (13)

ρ(A11) < 1, ρ[A22 + A21(In1 −A11)
−1A12] < 1 (14)

and the orthogonal initial states are absolutely convergent,
i.e.,

∞∑
i=0

xxxv(i, 0) < ∞,

∞∑
j=0

xxxh(0, j) < ∞ (15)

Proof. Note that xxxv(0, j + 1) = A22xxx
v(0, j) +

A21xxx
h(0, j). Then, we have that xxxv(0, j) < ∞, ∀ j ∈ Z+

if ρ(A22) < 1 and xxxh(0, j) < ∞, ∀ j ∈ Z+. It implies
xxx(0, j) < ∞, ∀ j ∈ Z+. Now, let us show xxx(1, j) < ∞, ∀ j
∈ Z+. Note that xxxh(1, j + 1) = A11xxx

h(0, j) + A12xxx
v(0, j).

Then, we have xxxh(1, j) < ∞, ∀ j ∈ Z+. Furthermore, since
xxxv(1, j +1) = A22xxx

v(1, j)+A21(A11xxx
h(0, j)+A12xxx

v(0, j)),
we can get that xxxv(1, j) < ∞, ∀ j ∈ Z+ if ρ(A22) < 1 and
xxx(0, j) < ∞, ∀ j ∈ Z+. It follows that xxx(1, j) < ∞, ∀ j ∈
Z+. Continuing this procedure, we can show that xxx(i, j) <
∞, ∀ i, j ∈ Z+.

For any integer q > 0, it is not hard to see from (11) that

q∑
j=0

xxxh(i + 1, j) = A11

q∑
j=0

xxxh(i, j) + A12

q∑
j=0

xxxv(i, j)

q∑
j=0

xxxv(i, j + 1) = A21

q∑
j=0

xxxh(i, j) + A22

q∑
j=0

xxxv(i, j)

which implies

q∑
j=0

xxxh(i + 1, j) =

[A11 + A12(In2 −A22)
−1A21]

q∑
j=0

xxxh(i, j)+

A12(In2 −A22)
−1(xxxv(i, 0) + xxxv(i, q + 1)) (16)

Let q →∞. Then, based on the 1-D BIBO stability theory,
it follows that

∞∑
j=0

xxxh(i, j) < ∞, ∀ i ∈ Z+ (17)

if ρ[A11+A12(In2−A22)
−1A21] < 1 and

∑∞
j=0 xxxh(0, j) < ∞.
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Now, let us prove
∑∞

j=0 xxxv(i, j) < ∞, ∀ i ∈ Z+. From

(11), we can also get

(I −A22)

q∑
j=0

xxxv(i, j) =

A21

∞∑
j=0

xxxh(i, j) + xxxv(i, 0)− xxxv(i, q + 1)

Clearly, we have

∞∑
j=0

xxxv(i, j) < ∞, ∀ i ∈ Z+ (18)

if ρ(A22) < 1 and
∑∞

j=0 xxxh(i, j) < ∞, limj→∞ xxxv(i, j) < ∞.

Therefore, from (17) and (18), we can easily obtain

lim
j→∞

xxx(i, j) = 0, ∀ i ∈ Z+ (19)

if ρ(A22) < 1, ρ[A11 + A12(In2 − A22)
−1A21] < 1 and∑∞

j=0 xxxh(0, j) < ∞.
Using a similar procedure, we can also get

lim
i→∞

xxx(i, j) = 0, ∀ j ∈ Z+ (20)

if ρ(A11) < 1, ρ[A22 + A21(In1 − A11)
−1A12] < 1 and∑∞

i=0 xxxv(i, 0) < ∞. ¤
Remark 2. It was shown in [13] that the asymptotic

stability of 2-D positive Roesser model (11) is equivalent
to ρ(A) < 1. However, ρ(A) < 1 is the necessary and
sufficient condition only for any initial states xxx(i,−i) rather
than xxxv(i, 0), xxxh(0, j), since the result is established on the
basis of Theorem 1 in [18] whose initial states are xxx(i,−i).

3 Numerical examples

Example 1. Consider the 2-D positive FM first model
(1) with

A0 =

[
0.5 0.1
0 0.5

]
, A1 =

[
0.2 0
0.1 0.2

]

A2 =

[
0.1 0
0 0.2

]

It is not hard to see that Example 1 satisfies the condi-
tion given by (3). Thus, from Theorem 1, the above system
with any orthogonal initial states satisfying (5) is asymp-
totically stable. Assume that the orthogonal initial states
are given as xxx(i, 0) = [1 1]T10(0.9)i(sin(i) + 1), xxx(0, j) =
[1 1]T10(0.9)j(cos(j) + 1), ∀ i ≥ 1, j ≥ 0. Then, the simu-
lation result of the trajectory is given in Fig. 1.

Fig. 1 The solution of Example 1 at times i, j ∈ [0, 80]

Example 2. Consider the 2-D positive Roesser model
(11) with

A11 =

[
0.5 0.1
0.2 0.5

]
, A12 =

[
0 0.2

0.1 0.3

]

A21 =

[
0 0.5

0.5 0

]
, A22 =

[
0.6 0.1
0.1 0.4

]

Clearly, the above system satisfies the condition (13).
Thus, from Theorem 2, the above system is asymptotically
stable for any orthogonal initial states satisfying (15). As-
sume that the orthogonal initial states xxxv(i, 0) = [1 1]T0.5i,
xxxh(0, j) = [1 1]T0.5j , ∀ i ∈ Z+. Then, the simulation result
of the trajectory is given in Fig. 2.

Fig. 2 The solution of Example 2 at times i, j ∈ [0, 100]

From Figs. 1 and 2, we can see that Theorems 1 and 2 are
effective and applicable for exponentially convergent initial
states.

4 Conclusions
The main contribution of this study is to recognize the

impact of the orthogonal initial states xxx(i, 0), xxx(0, j) (or
xxxv(i, 0), xxxh(0, j)) on the asymptotic stability of 2-D sys-
tems. Note that 2-D systems originally come from the
state-space realization of digital filters. Therefore, we do
not need to consider boundary conditions when designing
2-D digital filters, because the initial states of digital fil-
ters can be artificially chosen, and necessary and sufficient
stability conditions of asymptotical stability of 2-D linear
systems were presented for any diagonal initial states. How-
ever, when we investigate the engineering applications of
2-D systems (e.g., the 2-D system based iterative learn-
ing control), it is inevitable to consider the impact of the
orthogonal initial states on the asymptotic stability of 2-
D systems, because generally, most of the engineering ap-
plications have orthogonal initial states. Thus, it is very
meaningful to study the asymptotic stability of 2-D system
with orthogonal initial states.
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