基于 3-参数变长编码的图像无损压缩算法

高健1 饶珺1 孙瑞鹏1

摘 要通过对 Huffman 编码方法的研究和分析, 提出了一种基于 3-参数变长编码 (3-PVLC) 的图像数据无损压缩算法. 在 图像数据转换为混合差分数据基础上, 采用 3-PVLC 对差分数据进行一次编码, 并利用一种自适应性的游长缩减法对一次编 码后的二值码流进行二次编码.本文的编解码方法较灵活, 可依据具体需要进行基于 3-PVLC 方法的一次编码或在一次编码 基础上完成二次编码, 且具较高压缩比.

关键词 无损压缩,压缩编码,混合差分,游长编码

引用格式 高健, 饶珺, 孙瑞鹏. 基于 3-参数变长编码的图像无损压缩算法. 自动化学报, 2013, **39**(8): 1289–1294 **DOI** 10.3724/SP.J.1004.2013.01289

An Image Lossless Compression Algorithm Based on 3-PVLC

GAO Jian¹ RAO Jun¹ SUN Rui-Peng¹

Abstract According to the study and analysis of Huffman coding method, this research proposes a kind of image lossless compression algorithm, which is based on 3-parameter variable length coding (3-PVLC). By conversion of image data to hybrid differential data, this research uses 3-PVLC for the 1st coding. After the 1st coding, an adaptive run-length reduction method is used for the 2nd coding to compress the achieved binary stream. The processes of coding and decoding in this research are simple, and this method possesses a higher compression ratio.

Key words Lossless compression, compression coding, hybrid differential, run-length coding

Citation Gao Jian, Rao Jun, Sun Rui-Peng. An image lossless compression algorithm based on 3-PVLC. Acta Automatica Sinica, 2013, **39**(8): 1289–1294

随着技术的不断发展,多媒体技术和通讯技术 等对信息数据的存储和传输也提出了更高的要求, 给现有的有限带宽带来更严峻的考验,尤其是具有 庞大数据量的数字图像通信.存储和传输的高难度 极大地制约了图像通信的发展,因此对图像信息压 缩技术的研究受到了越来越多的关注.压缩数据量 是图像压缩的首要目的,但保证压缩后图像的质量 也是非常重要的,无损压缩是指能精确恢复原始图 像数据的压缩方法,其在编码压缩过程中没有图像 信号的损失.受压缩图像质量的限制,无损压缩的压 缩比并不是很高,但是在某些获取图像比较困难或 者成像设备价格非常昂贵的情况下,压缩比高、可靠 性好的图像无损压缩是非常有必要的,特别是在医 学图像、航空图像、遥感图像、卫星图像、图像归档、 高精度图像分析等领域.

JPEG 2000 标准^[1] 是国际标准化组织 ISO 和 国际电信标准化联盟 ITU-T 为 21 世纪图像压 缩和应用联合颁布的新一代图像压缩国际标准. JPEG 2000 标准相比 JPEG 标准^[2] 不仅能达到 更好的图像压缩质量, 还具有一些独特的特点:同时支持有损和无损编码、支持渐进式的传输、抗干 扰能力强等.这些特点源于 JPEG 2000 所采用的 3 种核心算法,即离散小波变换^[3-4]、位平面编码和 二进制算术编码^[5].但是 JPEG 2000 编码计算复杂 性较高,计算开销较大,特别地,对图像的无损压缩, JPEG 2000 的优点并不突出.

数据压缩方式主要是通过减少编码冗余,为消除编码冗余需采用变长编码方法. Huffman^[6-8]的编码方法充分利用了短码,编码效率比较高,且对编码设备的要求也比较简单,是综合性能较高的一种编码方法. 但是,它也存在工作量大、编解码时间较长等缺陷,给实际应用带来很大困难. 算术编码能最大限度地减小信息的冗余度,与 Huffman 编码^[6-8]方法相比,在同样的计算机系统上,算术编码可以得到更好的压缩效果,但却要消耗也许几十倍的计算时间,因此无法成为日常使用的压缩方法. 一些常用的亚优编码方法,如 B2 码以及移位码等,虽然编解码效率得到提高,但编码形式固定、单一,对信源的统计特性有特殊要求,压缩效率较低.

传统的游程编码方法 (Run length encoding, RLE)^[9-11] 的基本原理是将游程用一个计数值 (游程长度)来代替,根据二值码序列中游程长度的分布

收稿日期 2011-11-24 录用日期 2012-12-21

Manuscript received November 24, 2011; accepted December 21, 2012

本文责任编委 宗成庆

Recommended by Associate Editor ZONG Cheng-Qing

^{1.} 上海大学机电工程与自动化学院 上海 200072

^{1.} School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072

特征,基于变长编码原理给出相应游程长度的编码, 从而实现二值码序列的无损压缩,如国际传真标准 CCITT T.4 (G3)标准根据游程长度大于或小于等 于 63,将码字分为形成码和终止码两种,对于 0~63 之间的游长,用单个码字,即终止码表示;对于大 于 63 的游长,通过形成码和终止码的组合来表示. CCITT T.4 (G3)标准的解码过程是通过编码表逐 一匹配并恢复各游程长度.上述传统的游程编码方 法,对二元序列中全部游程重新进行编码,往往导致 较短游程的编码位数大于较短游程长度的自然位数, 当二元序列中较短游程较多时,较短游程重新编码 所导致的数据膨胀会严重影响二元序列的压缩效能.

针对上述问题,本文给出一种新的数据编码 方法,即 3-参数变长编码 (3-parameter variable length coding, 3-PVLC) 方法, 它能根据信源的统 计分布特征选取最佳3参数,从而确定一种最佳的 即时码构造形式, 信源字符的编码由首部、中部和尾 部三部分二值码组成,编码首部由1元即时码构成, 通过编码首部及上述3参数即可确定编码中部及尾 部二值码码长, 编码在任何信源统计特性下均有惟 一对应性, 解码无需匹配, 编解码效率较高. 为了实 现二次编码,本文还提出了一种具有自适应特性的 游程编码无损压缩算法,依据 3-PVLC 方法完成的 一次编码所对应的二值码序列中游程的分布特征, 选择一个游长临界缩减值,对游程长度大于或等于 游长临界缩减值的游程进行缩减, 而对小于游长临 界缩减值的游程不进行缩减处理 (不重新编码), 从 而实现在对较长游程缩减的同时,避免了因对较短 游程重新编码所导致的数据膨胀^[9].此外,本文提 出的方法可在二值码序列中进行多次游长缩减,直 至达到最佳压缩效果,实现图像数据无损压缩的二 次编码. 本文算法结构如图 1 所示.

图 1 本文算法结构图 Fig. 1 Structure of the algorithm

1 3-参数变长编码方法

本文所述图像无损压缩方法包含 4 个步骤: 1) 图像数据预处理, 即生成图像混合差分矩阵; 2) 依混合差分矩阵元素的统计特征选取最佳 3 参数; 3) 依最佳 3 参数构造混合差分矩阵各元素变长编 码, 生成一次编码的二值码流; 4) 对一次编码后的 二值码流, 按游长缩减编码方法进行二次编码. 也可 以根据需要仅进行一次编码,从而实现图像数据压缩的快速性.

1.1 图像数据的预处理

为增加图像数据的集中度、减少编码冗余、提高压缩比,常采用各种差值方法对图像数据进行预处理. 1995 年制定的 JPEG-LS^[12] 标准是基于惠普实验室开发的低复杂度图像压缩 (Low complexity lossless compression for images, LOCO-I) 算法,它主要依赖于预测编码技术和差值自适应编码技术. JPEG-LS^[12] 预测器对位于图 2 所示的 a, b, c 等 3 个邻近像素的重建组值 R_a, R_b, R_c 进行综合,形成 x 像素的预测值 P_x ,预测值 P_x 由式 (1) 得到^[13].

$$P_x = \begin{cases} \min(R_a, R_b), & \text{ yn} \notin R_c \ge \max(R_a, R_b) \\ \max(R_a, R_b), & \text{ yn} \# R_c \le \min(R_a, R_b) \\ R_a + R_b - R_c, & \text{ Top} \end{cases}$$
(1)

其中,
$$\sigma_x = R_x - P_x$$
 为实际值与预测值之差.

图 2 x 及其临近像素间的关系 Fig. 2 x and the relationship among its neighboring pixels

对一幅正常的自然图像而言,图像像素值沿图 像横向或纵向方向除边界区域外,灰度值变化较为 平缓,即相邻数据的相关性较强,其具体表现为图像 左右相邻像素或上下相邻像素之差整体较小.横向 与纵向相关性在图像的不同局部区域的表现一般又 各有不同.本文给出了一种块差分提取的图像数据 预处理方法.

设
$$D_{m \times n} = (d_{ij})_{m \times n}$$
 为图像矩阵. 令

$$\begin{aligned} x_{ij} &= d_{ij} - d_{i,j-1}, \quad i = 1, \cdots, m; \ j = 2, \cdots, n \\ x_{i1} &= d_{i1} - d_{i-1,1}, \quad i = 2, \cdots, m \\ y_{ij} &= d_{ij} - d_{i-1,j}, \quad i = 1, \cdots, m; \ j = 2, \cdots, n \\ y_{1j} &= d_{1j} - d_{i,j-1}, \quad j = 2, \cdots, n \\ x_{00} &= 0, \ y_{00} &= 0 \end{aligned}$$

$$(2)$$

由此生成横向与纵向差分矩阵 $X_{m \times n} = (x_{ij})_{m \times n}$; $Y_{m \times n} = (y_{ij})_{m \times n}$. 对矩阵 $X_{m \times n}$ 和 $Y_{m \times n}$ 分别做 $k \times k$ 大小的子块分解, 计算两对应子块元 素绝对值和, 取绝对值之和最小子块全体元素置入 矩阵 $Z_{m \times n}$ 对应子块处, 称 $Z_{m \times n}$ 为混合差分矩阵. 其中, 混合差分矩阵 $Z_{m \times n}$ 某子块取自横向差分子 块时,标记为 0,取自纵向差分子块时,标记为 1,由此生成的混合差分子块方向表,记为 M,占用比特数为 $B_M = \lceil m/k \rceil \times \lceil n/k \rceil$.其中, $\lceil \cdot \rceil$ 表示向上取整函数.显然,由图像矩阵元素 d_{00} (首字符)、混合差分矩阵 $Z_{m \times n}$ 和子块方向表 M,即可复原图像矩阵 $D_{m \times n}$.

逐行提取混合差分矩阵元素符号,正数记为 0, 负数记为 1,由此生成差分符号表,记作 S,占用比 特数设为 B_s . 经符号提取后得到非负混合差分矩 阵,记为 $|Z_{m \times n}| = (|z_{ij}|)_{m \times n}$.

对于符号列表 *S*,除了零差分元素不需计入符 号外,有部分差分符号也可以去除.设图像最小像素 值为 g_{\min} ,最大像素值为 g_{\max} ,混合差分矩阵 $Z_{m\times n}$ 中各混合差分值分别是左右或上下图像像素值之差, 若某混合差分值 $z_{ij} = d_{ij} - d_{i,j-1}$,且 $d_{i,j-1} + |z_{ij}|$ > g_{\max} 或 $d_{i,j-1} - |z_{ij}| < g_{\min}$,则表明此处差分符 号可通过图像元素 $d_{i,j-1}$ 和差分绝对值 $|z_{ij}|$ 获得, 即当 $d_{i,j-1} + |z_{ij}| > g_{\max}$ 时,则 $d_{ij} = d_{i,j-1} - |z_{ij}|$; 当 $d_{i,j-1} - |z_{ij}| < g_{\min}$ 时,则 $d_{ij} = d_{i,j-1} + |z_{ij}|$. 此处差分符号的保存可去除.

对于 256 级灰度图像或 24 位真彩色图像, 有 0 $\leq d_{ij} \leq 255$, 于是 $-255 \leq z_{ij} \leq 255$, 0 $\leq |z_{ij}| \leq 255$.

1.2 一次编码

设非负混合差分矩阵 $|Z_{m \times n}|$ 全体独立元素 数据集为 $A = \{a_0, a_1, \dots, a_{255}\}$ 其中, $a_i = i$ 或 $a_i = \text{null } (0 \le i \le 255)$. 对应的独立元素个数统计 数据集记为 $N = \{n_0, n_1, \dots, n_{255}\}$. 且当 $a_i = \text{null}$ 时, $n_i = 0$. 通过 Huffman 编码^[1-3] 的二叉树构造 方式可以证明: 如果数据集 $N = \{n_0, n_1, \dots, n_{255}\}$ 满足

$$n_i \ge \sum_{j=i+1}^{255} n_j$$
 (3)

则数据集 $A = \{a_0, a_1, \dots, a_{255}\}$ 中各元素的 Huffman 码^[1-3] 字为下列 1 元即时码

 $0, 10, 110, 1110, \cdots, 11, \cdots, 10$ (4)

显然,式(3)包含如下单调关系

$$n_0 > n_1 > \dots > n_{255}$$
 (5)

对于大多数图像, 独立元素个数统计数据集 N = { n_0, n_1, \dots, n_{255} } 大体呈现单调关系, 但不严格 满足式 (5), 故式 (3) 不成立. 基于此, 可通过数据有 限次合并的方式, 建立新的数据集 A^v 和新的统计数 据集 N^v , 并使 N^v 中各元素基本满足式 (3), 并按式 (4) 对 A^v 中各元素进行编码. 记 $A^0 = A, N^0 = N$. 具体合并步骤如下:

$$A^{1} = \{a_{0}, a_{1}, \cdots, a_{127}\}$$
$$N^{1} = \{n_{0} + n_{1}, n_{2} + n_{3}, \cdots, n_{254} + n_{255}\} = \{n_{0}^{1}, n_{1}^{1}, \cdots, n_{127}^{1}\}$$
(6)

其中,数据集 A^1 中任一元素 k 对应数据集 A^0 中相 邻两元素 2k+0 = 2k+1,由标识符 0 和 1 构建 A^1 至 A^0 中元素转换关系.以此类推,可得 v 次合并数 据集 A^v 和 v 次合并个数统计数据集 N^v .

一般情况下,当 v 较小时,个数统计数据集 N^v 不严格满足式 (3) (N^v 中靠后部分元素),故采取编 码截断的方式对数据集 A^v 中靠前部分元素按式 (4) 进行编码.

定义 1. 若对数据集 $A^{v} = \{a_{0}, a_{1}, \dots, a_{p-1}, a_{p}, \dots, \text{round}(e/2^{v})\}$ 前 p 个元素 $a_{0}, a_{1}, \dots, a_{p-1}$ 按式 (4) 进行编码, 元素 $a_{p}, \dots, \text{round}(e/2^{v})$ 的标 识符由 p 个 1 组成, 则称 p 为 3-PVLC 编码截断阶 数. 其中 round 为取整函数. e 为集合 A 中最大非 空元素.

定义1 给出元素 $a_p, \dots, \text{round}(e/2^v)$ 的标识 符为 $p \uparrow 1$, 各元素可通过 $b_{v,p}$ 位二值码区分, 数值 $b_{v,p}$ 由式(7) 确定.

$$b_p^v = \left\lceil \log_2 \left[\operatorname{round} \left(\frac{e}{2^v} \right) - p + 1 \right] \right\rceil$$
 (7)

这里, [·] 表示向上取整函数. $b_{v,p}$ 是表示 0, 1, ···, round($e/2^v$)-p 二进制自然码的位数, 将该二进制自 然码称为元素 a_p , ···, round($e/2^v$) 的区分二值码.

定义 2. 称定义 1 所述数据集 $A^v = \{a_0, a_1, \dots, a_{p-1}, a_p, \dots, \text{round}(e/2^v)\}$ 各元素编码 (1 元 即时码) 为数据集 $A = \{a_0, a_1, \dots, a_{255}\}$ 各元素 3-PVLC 编码的首部; 称数据集 $A = \{a_0, a_1, \dots, a_{255}\}$ 各元素除 2^v 的 v 位余数二值码为 3-PVLC 编码的尾部; 称数据集 $A^v = \{a_0, a_1, \dots, a_{p-1}, a_p, \dots, \text{round}(e/2^v)\}$ 中元素 $a_p, \dots, \text{round}(e/2^v)$ 的 $b_{v,p}$ 位二值码为数据集 $A = \{a_0, a_1, \dots, a_{255}\}$ 中元 素 2^va_p, …, a₂₅₅ 的 3-PVLC 编码的中部.

定义 3. *v*,*p*,*b*_{*v*,*p*} 称为 3-PVLC 的三参数.

设合并次数为v,编码截断阶数为p,对混合差 分矩阵 $Z_{m \times n}$ 全体元素的 3-PVLC 编码,占用比特 数 $G_{v,p}$ 为

$$G_{v,p} = \sum_{i=0}^{p-1} n_i^v + (p+b_{v,p}) \sum_{i=p}^q n_i^v + v \times m \times n + B_M + B_S$$
(8)

其中, $q = \text{round}(e/2^v)$, B_M 为子块方向表占用比特数, B_S 为混合差分符号占用比特数.

依据式 (8), 分别取不同的合并次数 v = 0, 1, 2,

3,4,并在各次合并基础上计算编码截断阶数分别 为 $p = 1, 2, \dots, 32$ 情形下的 $G_{v,p}$,共计 160 种组 合情形.从中取 $G_{v,p}$ 最小时所对应的合并次数 v、 编码截断阶数 p 和 $b_{v,p}$.通过此三参数,即可确定 3-PVLC 编码首部、中部及尾部的二值码形式,从 而实现图像数据的一次编码.表1给出了编码截断 阶数为 p 时, 3-参数变长编码首部及中部的二值码.

表1中,符号"×"表示"0"或"1".对元素一次编码的首部,即1元即时码0,10,110,…,11… 10,11…11,依自然位进行分解,并按自然位依次 置入二值码流表 *T*₁中,然后依次在 *T*₁中置入编码 中部、尾部、差分符号表 *S*和子块方向表 *M*,由此 生成一次编码后的二值码流表 *T*₁.

表 2 给出了 v = 0, p = 5 情形下, 数据集 3, 3, 2, 3, 5, 4, 0, 0, 4, 1, 2, 1, 2, 6, 2, 1, 1, 1, 2, 1 的编 码首部按自然位的分解过程.

将分解后的编码首部按自然位由低到高依次置 入二值码流表 T₁中,具体如下:

 $\begin{array}{c} 1111110011111111111 \\ 1111111010111100010 \\ 110111100100 \\ 0001111 \\ 1001 \end{array}$

依据图像非负差分变换的平缓特性,编码首部 经上述分解及放置后,可期望获得游长较长的0串 或1串,以利于二次编码压缩.

上述一次编码方法, 将图像非负混合差分经 v 次合并后的数据集分为两类数据:数值小于编码截 断阶数 p 的为第一类, 其编码由编码首部 (1 元即时 码)和编码尾部 (v 次合并 v 位余数二值码, 从数据 集 A^v 恢复数据集 A 的标识码)构成;数值大于等于 编码截断阶数 p 的为第二类, 其编码由编码首部 (p 个 1 组成的二值码)、编码中部 (第二类数据集中各 元素的区分二值码)和编码尾部组成.

1.3 二次编码

统计 T_1 中的 0 长和 1 长, 得到 T_1 的游长分布 数组 $L = \{l_1, l_2, \dots, l_r\}$, 按 0 长和 1 长将数组 L 分 为 0 长数组 L_0 和 1 长数组 L_1 . 然后将数组 L_0 和 L_1 分为多个个数为 512 的子数组. 设某长度分布子 数组集合为

$$L_f = \{l_{f1}, l_{f2}, \cdots, l_{f512}\}, \ f = 1, 2, \cdots$$
(9)

记符号集

$$H = \{1, 2, \cdots, 512\} \tag{10}$$

Ŷ

$$L_t = \{ l_{fk} | l_{fk} \ge t, \ k \in H, \ l_{fk} \in L_f \}$$
(11)

记

$$C_t = \sum l_{fk}, \ k \in H, \ l_{fk} \in L_f \backslash L_t$$
(12)

整商集

$$Q_t = \left\{ \text{round} \left[\frac{l_{fk} + t}{2} \right] | k \in H, l_{fk} \in L_t \right\}$$
(13)

余数集

$$R_t = \{ (l_{fk} + t)\%2 | k \in H, l_{fk} \in L_t \}$$
(14)

其中, $t = 1, 2, \dots, 8$, 符号 "%2" 表示元素除 2 的 余数, R_t 占用比特数记为 B_t .

在 $t = 1, 2, \cdots, 8$ 时,分别求 Q_t 中元素之和, 并取

$$E_u = \min\left(\sum \operatorname{round}\left[\frac{l_{fk} + t}{2}\right] + B_t + C_t\right)$$
(15)

表 1 编码首部与中部的二值码结构

						°	
A^v	0	1	2	 p - 1	p		$\operatorname{round}(e/2^v)$
冯首部	0	10	110	 $11 \cdots 10 (p-1 \uparrow 1)$	$11 \cdots 1 (p \uparrow 1)$		$11 \cdots 1 (p \uparrow 1)$

Table 1 Binary code's structures of the header and middle coding

	-	-	-					(1	• •			(1		, ,					(1)	/	
编码中部	无	无	无				Ę	无		(00	0 (b _i	$,_p \uparrow$	0)	•••	1	× •••	$\times (b_i)$,,p 位	二进制	数)
							表 2	编码	自首部	自然	位及分	∫解									
			Tab	le 2	Nati	ural s	space	s and	deco	ompos	sition	of th	ie he	ader	codin	g					
数据集		3	3	2	3	5	4	0	0	4	1	2	1	2	6	2	1	1	1	2	1
	第1位	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	第2位	1	1	1	1	1	1			1	0	1	0	1	1	1	0	0	0	1	0
编码首部	第3位	1	1	0	1	1	1			1		0		0	1	0				0	
	第4位	0	0		0	1	1			1					1						
	第5位					1	0			0					1						
编码中部					0									1							

编

其中, $k \in H$, $l_{fk} \in L_t$, $1 \le u \le 8$. 如果

$$E_u < \sum_{j=1}^{512} l_{fj} \tag{16}$$

则对数组 L_f 中元素值大于等于 u 的元素加 u 后整 除 2, 从而实现游长第 1 次循环缩减. 其中, u 称为 临界缩减长度.

长度分布子数组 L_f 经 1 次循环缩减后,得 1 次长度循环缩减数组 $L_h = (l_{h1}, l_{h2}, \dots, l_{h512}),$ 如 果 $l_{fk} \ge u$,则 $l_{hk} = \text{round}[(l_{fk} + u)/2],$ 否则 $l_{hk} = l_{fk}, k \in H$.

按上述做法,对1次循环缩减后的长度数组中 元素值大于等于 u 的元素分别再进行加 u, u + 1, …,8 整除2处理,如果满足式 (16),则可进行游长 2次循环缩减.以此类推,直至式 (16)不再满足为 止.

图 3 中, Sign 表示长度子数组 L_f 的可缩减状态, "0"表示可缩减, "1"表示不可缩减; ξ 表示循环缩减次数, $1 \le \xi \le 8$; $\lambda_1, \lambda_2, \dots, \lambda_{\xi}$ 表示各次循环临界缩减长度, $1 \le \lambda_1, \lambda_2, \dots, \lambda_{\xi} \le 8$. 当 Sign = 0 时,表明长度分布子数组中较短长度值占大多数,无需重新编码 (二次编码); 当 Sign = 1 时,表明长度分布子数组中较大长度值较多,可进行二次编码,实现长度分布子数组的二次压缩.

2 实验结果

本文对图像预处理及图像压缩编码进行了仿真 实验,并从数字图像经典测试图片中选取了6张如 图4所示的规格为256像素×256像素的8位灰 度连续色调图像作为实验对象.

表3给出了几种图像数据预处理方法的信息熵. 表3中,I表示式(1)所述方法,II表示横向差分, III表示纵向差分,IV表示混合差分(本文方法).其 中,混合差分法(IV)子块阵大小为4×4.表4给出 了JPEG 2000、ZIP 7.0、WinRAR 以及本文方法 压缩后的平均码长.

由表 3 可知, 混合差分信息熵最低, 虽然子块分 解处理方法需要一个方向关系表表示混合差分矩阵 子块方向, 但其平均占用比特数 *B_M*/(*m*×*n*) 较小.

表4给出了二次编码后的平均码长的最终结果. 本文方法在一台 AMD Athlon 64 X2 Dual Core Processor 4200+ 2.20 GHz, 1.00 GB 内存, XP 操 作系统的台式计算机上完成,图像数据预处理与编 码平均耗时 120 ms, 解码平均耗时 73 ms. 测试图片 经本文方法二次压缩后, 平均码长均低于相应的信 息熵.

数字图像压缩效率取决于图像的复杂度,本文 采用的混合差分提取方法,总体上能使图像等价数 据(混合差分)具备较高的集中度,有利于提高编码 的压缩比. 3-参数变长编码方法能依据数据统计特 性,选择最佳3参数,从而对不同图像确定一种变长 即时码构造形式,编码可分为首部、中部及尾部,编 码首部结构固定、统一.通过编码首部和3个参数 即可确定编码中部和尾部码长,编解码结构简单、耗 时少.此外,本文提出的一种具自适应特性的游长缩 减方法,可依据二值码流串中"0"和"1"长度串的 分布特性,选择临界缩减长度,并从临界缩减长度开 始,对二值码流串进行长度缩减,而小于临界缩减长

Sign	ζ	λ_1	λ_2		λ_{ξ}	ξ 次循环缩减后长度	ζ 循环缩减余数
------	---	-------------	-------------	--	-----------------	------------	----------

图 3 长度子数组压缩后的表结构

Fig. 3 Structure of the length sub-array after being compressed coding

1293

preprocessing methods

Π

4.88

4.41

6.33

III

4.43

4.55

6.66

IV 4.28

4.09

6.20

Ι

5.71

5.24

7.00

Images

Lenna

Airplane

Baboon

结论

3

自动化学报

表 4 实验结果比较 (bpp) Table 4 Comparison of experimental results (bpp)

Imagos	IPEC 2000	ZID Z 0	WinDAD	Proposed					
Images	JF EG 2000	ZIF 7.0	W IIII AIL	After 1st coding	After 2nd coding				
Lenna	4.34	5.76	5.56	4.79	4.50				
Airplane	4.21	4.80	5.39	4.70	4.17				
Columbia	3.98	4.94	4.80	4.38	3.93				
Camera	4.57	5.07	5.38	4.84	4.43				
Pentagon	5.47	5.99	5.93	5.41	5.37				

度的长度串在长度缩减过程中除保留长度参数外, 不占用额外存储空间.此过程可反复进行,对较长长 度串循环缩减.本文方法具有计算复杂度低、软件 实现简单、压缩效能较高等特点.

References

 Wang Ye-Xing, Mu Wei-Bin, He Peng, Fang Han-Xiong, Zhang Shu-Li. JPEG 2000-based compression of medical image. Journal of Qiqihar University: Natural Science Edition, 2011, 27(6): 8–11

(王烨兴,穆伟斌,何鹏,房汉雄,张淑丽. 基于 JPEG 2000 的医学 图像压缩处理研究. 齐齐哈尔大学学报: 自然科学版, 2011, 27(6): 8-11)

- 2 Bai Jing, Wu Jia-Ji, Lu Shan, Jiao Li-Cheng. Zeroblock embedded image coding algorithm based on lifting Directionlet transform. ACTA Automatica Sinica, 2011, **37**(3): 283-284 (白静, 吴家骥, 卢山, 焦李成. 基于提升 Directionlet 变换的零块 嵌入图像编码算法. 自动化学报, 2011, **37**(3): 283-284)
- 3 Zheng Wei, Cui Yue-Li, Wang Fang. A review of image compression coding based on wavelet transform. Communications Technology, 2008, 41(2): 83-85, 96 (郑伟, 崔跃利, 王芳. 基于小波变换的图像压缩编码研究综述. 通信 技术, 2008, 41(2): 83-85, 96)
- 4 Du Guang-Huan, Zhang Xiao-Guang. Application of image compression algorithm base on wavelet analysis. *Science Technology and Engineering*, 2012, **12**(18): 4391-4393 (杜广环,张晓光. 基于小波分析的图像压缩算法应用. 科学技术与 工程, 2012, **12**(18): 4391-4393)
- 5 Liu Wen-Yi, Lu Lin. Improvement and implementation of JPEG 2000 core algorithm. Mechanical Engineering and Automation, 2010, (2): 9-11 (刘文怡, 鲁林. JPEG 2000 核心算法的改进及实现. 机械工程与自 动化, 2010, (2): 9-11)
- 6 Kavousianos X, Kalligeros E, Nikolos D. Optimal selective Huffman coding for test-data compression. *IEEE Transac*tions on Computers, 2007, 56(8): 1146–1152
- 7 Shen Shi-Yi, Chen Lu-Sheng. The Theory of Information and Coding. Beijing: Science Press, 2002. 56-67 (沈世镒, 陈鲁生. 信息论与编码理论. 北京: 科学出版社, 2002. 56 -67)
- 8 Russ J C. The Image Processing Handbook (6th edition). America: CRC Press, 2011. 178–187
- 9 Al-Hashem R, Al-Dmour A. Lossy image compression algorithm for improving image quality based on hybrid lossless techniques. *Information Technology Journal*, 2011, **10**(8): 1632–1636

- 10 Stabno M, Wrembel R. RLH: Bitmap compression technique based on run-length and Huffman encoding. *Information Systems*, 2009, **34**(4–5): 400–414
- 11 Yang E H, Wang L J. Joint optimization of run-length coding, Huffman coding, and quantization table with complete baseline JPEG decoder compatibility. *IEEE Transactions on Image Processing*, 2009, **18**(1): 63–74
- 12 Papadonikolakis M E, Kakarountas A P, Goutis C E. Efficient high-performance implementation of JPEG-LS encoder. Journal of Real-Time Image Processing, 2008, 3(4): 303-310
- 13 Li Xiao-Wen, Li Guo-Lin. Near-lossless compression method for Bayer image. Video Engineering, 2005, (8): 24-27 (李晓雯, 李国林. Bayer 图像的准无损压缩方法. 电视技术, 2005, (8): 24-27)

高 健 华中科技大学博士,上海大 学副教授.主要研究方向为图像处 理,计算数学.

E-mail: gaojian@shu.edu.cn

(GAO Jian Ph. D. at Huazhong University of Science and Technology, and associate professor at Shanghai University. His research

interest covers image processing and computational mathematics.)

饶 珺 上海大学硕士研究生. 主要 研究方向为数字图像处理. 本文通信 作者. E-mail: jean_rao@163.com (RAO Jun Master student at Shanghai University. Her main research interest is digital image processing. Corresponding author of this paper.)

孙瑞鹏 上海大学硕士研究生. 主要 研究方向为数字图像处理. E-mail: sunrp0217@163.com (**SUN Rui-Peng** Master student at Shanghai University. His main research interest is digital image processing.)