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On Optimal Fault Detection for
Discrete-time Markovian Jump

Linear Systems
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Abstract This paper deals with the problem of fault detection
for discrete-time Markovian jump linear systems (MJLS). Using
an observer-based fault detection filter (FDF) as a residual gen-
erator, the design of the FDF is formulated as an optimization
problem for maximizing stochastic H−/H∞ or H∞/H∞ perfor-
mance index. With the aid of an operator optimization method,
it is shown that a unified optimal solution can be derived by solv-
ing a coupled Riccati equation. Numerical examples are given
to show the effectiveness of the proposed method.
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During the past three decades, research on observer-
based robust fault detection and isolation (FDI) has re-

ceived much attention[1−7]. In reviewing of the develop-
ment of FDI techniques, there are two main approaches
which are widely used for linear time-invariant (LTI) sys-
tems with L2-norm bounded unknown inputs and faults.
One is the H∞ filtering scheme which ensures a prescribed
bound on the L2-induced gain from the disturbance to the
error between the fault and the residual[8−12]. The other
one is the H∞ optimization scheme which involves solv-
ing a two-objective optimization problem. In [13], a uni-
fied H∞ optimization solution is given in the framework
of maximizing H−/H∞ and H∞/H∞ performance indices
by coprime factorization approach, and in [14−15] this uni-
fied approach has been extended to linear continuous time-
varying (LCTV) systems and linear discrete time-varying
(LDTV) systems, respectively. In [16], a finite horizon
H−/H∞ and H∞/H∞ FDI formulation is proposed for
LDTV systems and an optimal solution is derived by solv-
ing a Riccati equation.

On the other hand, Markovian jump systems are ap-
propriate to model different plants subject to component
failures, sudden environment disturbances, abrupt changes
in subsystems interconnections, incomplete information in
communication channel and random delays. The problems
of control and filtering for Markovian jump linear systems
(MJLS) have been deeply investigated[17−22]. With the in-
creasing demands for system safety and reliability, it is of
significance to study the problem of FDI for MJLS. In [23],
the problem of fault detection for MJLS is formulated into a
two-object optimization problem and a numerical solution
is given via iterative linear matrix inequality (LMI) algo-
rithms. Later, the H∞ filtering scheme together with LMI
technique is applied in [24], and the same idea has also been
extended to the fault detection problem for various systems
with Markovian jump characteristic. For example, for net-
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worked control systems, [25−27] model the systems with
packet dropouts and time-delay as MJLS and observer-
based H∞-FDFs are designed, while in [28] fault detec-
tion for discrete-time MJLS with partially known transi-
tion probabilities is concerned. Recently, in [29−30], an
H∞ fault isolation algorithm is addressed based on the geo-
metric approach for both continuous-time and discrete-time
MJLS, respectively. Notice that although there exist some
results on fault detection of discrete-time systems such as
the Krein space based H∞ filtering method, the coprime
factorization based optimization approach or the matrix
norm optimization based approach[10, 15−16], the problem
of optimal fault detection for MJLS could not be handled
by direct application of the existing results due to the fact
that MJLS is intrinsically stochastic and mode-dependent.
To authors′ best knowledge, the problem of optimal fault
detection for discrete-time MJLS in the H∞ optimization
scheme has not been published in the open literature and
the research remains significant and challenging, which mo-
tivates our present study.

In this paper, the problem of optimal fault detection for
discrete-time MJLS will be investigated. By constructing
an observer-based FDF and defining input-output oper-
ators that map from fault and unknown input to resid-
ual, the problem of designing optimal FDF for discrete-
time MJLS is formulated in the framework of optimizing
H−/H∞ or H∞/H∞ performance index. A new adjoint
operator based optimization scheme is proposed for solving
the aforementioned optimization problem and an analytical
unified optimal solution is obtained by solving a coupled
Riccati equation. Numerical examples are given to show
the effectiveness of the proposed method.

Notations. Rn means the n-dimensional Euclidean
space. I and 0 denote identity matrix and zero matrix
with appropriate dimensions, respectively. X > 0 (X < 0)
denotes X is positive (negative) definite. E{ϑϑϑ(k)} means
the mathematical expectation of ϑϑϑ(k). ‖ααα(k)‖2 stands
for the deterministic l2-norm of ααα(k) with ‖ααα(k)‖22 =∑∞

k=0 αααT(k)ααα(k), while ‖ζζζ(k)‖2,E for the stochastic case

with ‖ζζζ(k)‖22,E = E{∑∞
k=0 ζζζT(k)ζζζ(k)}. 〈µµµ(k), ςςς(k)〉 =

E{Σ∞k=0µµµ
T(k)ςςς(k)} gives the definition of the inner product

for vector µµµ(k) and ςςς(k) with appropriate dimensions.

1 Problem formulation
Consider the following discrete-time MJLS:





xxx(k + 1) = A(θ(k))xxx(k) + B(θ(k))uuu(k) +
Bd(θ(k))ddd(k) + Bf (θ(k))fff(k)

yyy(k) = C(θ(k))xxx(k) + Dd(θ(k))ddd(k) +
Df (θ(k))fff(k)

xxx(0) = 0, θ(0) = i0

(1)

where xxx(k) ∈ Rn, uuu(k) ∈ Rnu , yyy(k) ∈ Rny , ddd(k) ∈ Rnd

and fff(k) ∈ Rnf denote the state, control input, measure-
ment output, unknown input and fault to be detected, re-
spectively; fff(k) and ddd(k) are l2-norm bounded. {θ(k)} is a
discrete-time homogeneous Markov chain taking values in
a finite set Ω = {1, 2, · · · , N} with transition probability
matrix Λ = [λij ]i,j∈Ω, where λij is defined as

λij = Pr{θ(k + 1) = j|θ(k) = i}
with

∑N
j=1 λij = 1. Denote by Ai, Bi, Bdi, Bfi, Ci,

Ddi and Dfi the values of A(θ(k)), B(θ(k)), Bd(θ(k)),
Bf (θ(k)), C(θ(k)), Dd(θ(k)) and Df (θ(k)), respectively, for
θ(k) = i ∈ Ω. Ai, Bi, Bdi, Bfi, Ci, Ddi and Dfi are known
constant matrices with appropriate dimensions.

For system (1), the following definition is first intro-
duced.
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Definition 1[17]. System (1) with uuu(k) = 0, ddd(k) = 0
and fff(k) = 0 is mean square stable if

E{‖xxx(k)‖2} → 0 as k →∞
for any initial condition xxx0 and initial distribution i0 ∈ Ω.

The core of fault detection is to generate a residual which
is robust to disturbance and sensitive to fault. For this
purpose, an observer-based FDF can be considered as a
residual generator. In order to guarantee the mean square
stability of the proposed FDF, the following assumptions
are used throughout this paper[19].

A1. (AT, CT) is mean square stabilizable;
A2. (BR,AR) is mean square detectable, where

A = (A1, · · · , AN ), C = (C1, · · · , CN )

ARi := AT
i − CT

i (DdiD
T
di)

−1DdiB
T
di

BRi := (I −DT
di(DdiD

T
di)

−1Ddi)B
T
di

AR = (AR1, · · · , ARN ), BR = (BR1, · · · , BRN )

A3. The instantaneous value of mode θ(k) is available
in real time.

Remark 1. When BdiD
T
di = 0, the assumption that

(BR,AR) is mean square detectable can be simplified
into (Bd,A) is mean square detectable, where Bd =
(Bd1, · · · , BdN ). It should be noticed that the duality of
stabilizable and detectable in the deterministic case can
not be directly extended to MJLS. We refer to [19] for the
definitions and duality of stabilizable and detectable for
MJLS.

In this paper, the following observer-based FDF is con-
sidered for MJLS (1)





x̂xx(k + 1) = A(θ(k))x̂xx(k) + B(θ(k))uuu(k) +
L(θ(k))(yyy(k)− C(θ(k))x̂xx(k))

rrr(k) = V (θ(k))(yyy(k)− C(θ(k))x̂xx(k))
(2)

where x̂xx(k) ∈ Rn is an estimate of xxx(k), rrr(k) ∈ Rr is the
generated residual, L(θ(k)) is the observer gain matrix and
V (θ(k)) is the (regular) post-filter to be determined.

By defining eee(k) = xxx(k) − x̂xx(k), it follows from (1) and
(2) that the filtering error dynamics can be obtained as
below





eee(k + 1) = (A(θ(k))− L(θ(k))C(θ(k)))eee(k) +
(Bddd(θ(k))− L(θ(k))Dd(θ(k)))ddd(k) +
(Bfff (θ(k))− L(θ(k))Df (θ(k)))fff(k)

rrr(k) = V (θ(k))(C(θ(k))eee(k)+Dddd(θ(k))ddd(k) +
Dfff (θ(k))fff(k))

(3)

Recalling that system (1) is linear and the input signals
and output signals of system (1) are defined in the same

field[31], an operator that maps fff 7→ rrr and an operator that
maps ddd 7→ rrr can be defined, respectively, which means that

rrrfff (k) = Grfrfrffff(k), rrrddd(k) = Grdrdrdddd(k)

where rrrfff (k) = rrr(k)|ddd(k)=0, rrrddd(k) = rrr(k)|fff(k)=0.
Define

‖Grf‖∞ = sup
fff∈l2, ‖fff‖2 6=0

‖rrrf (k)‖22,E

‖fff(k)‖22

‖Grd‖∞ = sup
ddd∈l2, ‖ddd‖2 6=0

‖rrrddd(k)‖22,E

‖ddd(k)‖22

‖Grf‖− = inf
fff∈l2, ‖fff‖2 6=0

‖rrrfff (k)‖22,E

‖fff(k)‖22

Similar to the deterministic cases in [14−16], the sensitivity
of residual to fault can be evaluated by ‖Grfrfrf‖∞ or ‖Grfrfrf‖−,
while the robustness of residual to unknown input can be
evaluated by ‖Grdrdrd‖∞. Furthermore, ‖Grfrfrf‖∞ and ‖Grfrfrf‖−
represents the best and the worst sensitivity criteria of fault
detection, respectively.

Based on the definitions above, the FDF design problem
can be formulated as: find a suitable observer gain matrix
L(θ(k)) and a regular post-filter V (θ(k)) such that system
(3) is mean square stable and satisfies the following perfor-
mance:

max
L(θ(k)),V (θ(k))

‖Grfrfrf‖∞
‖Grdrdrd‖∞ or max

L(θ(k)),V (θ(k))

‖Grfrfrf‖−
‖Grdrdrd‖∞ (4)

Remark 2. The proposed performance index
‖Grfrfrf‖∞/‖Grdrdrd‖∞ or ‖Grfrfrf‖−/‖Grdrdrdrdrdrdrdrdrd‖∞ which is slightly
different from the LTI case can be seen as a stochastic
version of H∞/H∞ or H−/H∞ performance for LTV
systems. However, there exists no explicit coprime
factorization realization for MJLS and the equivalence of
the norm between generalized transfer function matrix
and input-output operator does not hold for MJLS, which
indicates that the existing technique in [14] or [16] cannot
be applied to MJLS directly. To solve the aforementioned
problem, an adjoint operator based optimization method
will be proposed and a mode-dependent optimal FDF will
be derived.

2 Main results
Before deriving the main results of this paper, the follow-

ing definitions and lemmas which play the key role should
be given.

Definition 2[32]. Let Gs denotes an operator or a sys-
tem mapping from l2-norm bounded space S1 to l2-norm
bounded space S2. An operator G∼s is said to be the adjoint
operator of Gs from space S2 to S1 if 〈Gsµµµ, ςςς〉 = 〈µµµ, G∼s ςςς〉
for all µµµ ∈ S1 and ςςς ∈ S2.

Definition 3[32]. Let Gs denotes an operator or a sys-
tem mapping from l2-norm bounded input space S1 to l2-
norm bounded output space S2, then Gs is co-isometric if
‖G∼s ϕϕϕ(k)‖S2 = ‖ϕϕϕ(k)‖S1 . Here, ‖ · ‖S denotes the l2-norm
of a signal defined in space S.

Lemma 1. Consider the following residual generators:





x̂xxm(k + 1) = A(θ(k))x̂xxm(k) + B(θ(k))uuu(k) +
Lm(θ(k))(yyy(k)− C(θ(k))x̂xxm(k))

rrrm(k) = V m(θ(k))(yyy(k)− C(θ(k)x̂xxm(k)), m = 1, 2

where Lm(θ(k)) is the observer gain matrix such that
A(θ(k)) − Lm(θ(k))C(θ(k)) is mean square stable and
V m(θ(k)) is the post-filter. Then

rrr2(k) = Qrrr1(k) (5)

where Q is an operator that maps rrr1(k) 7→ rrr2(k).
Proof. The proof can be readily derived by applying

Lemma 1 in [16] to MJLS. In fact, for the following residual
generators





x̂xxm(k + 1) = A(θ(k))x̂xxm(k) + B(θ(k))uuu(k) +
Lm(θ(k))(yyy(k)− C(θ(k))x̂xxm(k))

εεεm(k) = yyy(k)− C(θ(k)x̂xxm(k), m = 1, 2

where Lm(θ(k)) is the observer gain matrix that ensures
the mean square stability of A(θ(k)) − Lm(θ(k))C(θ(k)),
an operator Qε that guarantees εεε2(k) = Qεε

1(k) exists,
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which can be realized by the following MJLS:





ηηη(k + 1) = (A(θ(k))− L2(θ(k))C(θ(k))ηηη(k) +
(L1(θ(k))− L2(θ(k)))ννν(k)

εεεQε(k) = C(θ(k)ηηη(k) + ννν(k), ηηη(0) = 0
(6)

Since V (θ(k)) is regular, i.e., there exists V (θ(k)) such
that

V +(θ(k))V (θ(k)) = I

where V +(θ(k)) denotes the left-inverse of V (θ(k)), then
we have:

rrr2(k) = V 2(θ(k))εεε2(k) = V 2(θ(k))Qεεεε
1(k) =

V 2(θ(k))Qε(V
1(θ(k))+rrr1(k)

Thus, Q can be represented as





ηηη(k + 1) = (A(θ(k))− L2(θ(k))C(θ(k))ηηη(k) +
L1((θ(k))− L2(θ(k)))(V 1(θ(k))+rrr1(k)

rrr2(k) = V 2(θ(k))(C(θ(k)ηηη(k) + (V 1(θ(k))+rrr1(k))
ηηη(0) = 0

(7)

¤
Lemma 2. For system (3), consider the operator Grd

that maps ddd(k) 7→ rrrd(k) which is realized by the following
discrete-time MJLS:





eee(k + 1) = Ae(θ(k))eee(k) + Be(θ(k))ddd(k)
rrrd(k) = Ce(θ(k))eee(k) + De(θ(k))ddd(k)
eee(0) = 0, θ(0) = i0

(8)

where Ae(θ(k)) = A(θ(k)) − L(θ(k))C(θ(k)), Be(θ(k)) =
B(θ(k)) − L(θ(k))Dd(θ(k)), Ce(θ(k)) = V (θ(k))C(θ(k)),
De(θ(k)) = V (θ(k))Dd(θ(k)). Let G∼rrrd be the adjoint oper-
ator of Grrrd. If there exists a semi-positive definite matrix
Pi ≥ 0 satisfying the following equations:





BeiB
T
ei + AeiP̄eiA

T
i = Pi

BeiD
T
ei + AeiP̄iC

T
ei = 0

DeiD
T
ei + CeiP̄iC

T
ei = I

(9)

where

Pi =

N∑
j=1

λijPj

then Grrrd is co-isometric.
Proof. From (8), we know that

rrrd(k) =





Ce(θ(k))
k−1∑
l=0

Φ(k, l + 1)Be(θ(l))ddd(l) +

De(θ(k))ddd(k), 0 < k ≤ ∞
De(θ(0))ddd(0), k = 0

(10)

where Φ(k, l) is the transition matrix defined by

Φ(k, l) =

{
Ae(θ(k − 1))Ae(θ(k − 2))· · ·Ae(θ(l)), 0 <l <k
I, k = l

Let G∼rdrdrdddd(k) = ddda(k). Applying the same idea in [33]
based on Definition 2, we have:

〈Grdrdrdddd(k), rrrddd(k)〉 = 〈ddd(k),G∼rdrdrdrrrddd(k)〉 = E

{ ∞∑
k=0

dddT(k)ddda(k)

}

i.e.

∞∑
k=0

E
{
rrrddd

T(k)[Ce(θ(k))
k−1∑
l=0

Φ(k, l + 1)Be(θ(l))ddd(l)+

De(θ(k))ddd(k)]
}

=
∞∑

k=0

E
{k−1∑

l=0

[(ΦT(k, l+1)CT
e (θ(k))rrrddd(k))TBe(θ(l))ddd(l)]+

rrrddd
T(k)De(θ(k))ddd(k)

}
=

∞∑
k=0

E
{
dddT(k)BT

e (θ(k))
∞∑

l=k+1

ΦT(l, k + 1)CT
e (θ(l))rrrddd(l) +

dddT(k)DT
e (θ(k))rrrddd(k)

}
=

E

{ ∞∑
k=0

ddda
T(k)ddd(k)

}
= E

{ ∞∑
k=0

dddT(k)ddda(k)

}

then, ddda(k) can be chosen as

ddda(k) = BT
e (θ(k))

∞∑
l=k+1

ΦT(l, k + 1)CT
e (θ(l))rrrd(l) +

DT
e (θ(k))rrrd(k)

In the following, let

xxxa(k) =

∞∑

l=k+1

ΦT(l, k + 1)CT
e (θ(l))rrrd(l)

then the state-space representation of G∼rd can be obtained
as





xxxa(k − 1) = AT
e (θ(k))xxxa(k)+CT

e (θ(k))rrrd(k)
ddda(k) = BT

e (θ(k))xxxa(k)+DT
e (θ(k))rrrd(k)

xxxa(∞) = 0
(11)

For system (11), when θ(k) = p and θ(k− 1) = q, define

V(xxxa(k), θ(k)) = xxxT
a (k)Ppxxxa(k), Pp ≥ 0

We have:

E

{ ∞∑
k=0

dddT
a (k)ddda(k)

}
= E

{ ∞∑
k=0

dddT
a (k)ddda(k) +

V(xxxa(k − 1), θ(k − 1))− V(xxxa(k), θ(k))
}

+

xxxa(∞)TPpxxxa(∞)− xxxa(−1)TPθ(−1)xxxa(−1) =

E
{ ∞∑

k=0

xxxT
a (k)(BepBT

ep+AepP̄pAT
ep − Pp)xxxa(k) +

2xxxa
T(k)(BepDT

ep + AepP̄pCT
ep)rrrddd(k) +

rrrddd
T(DepDT

ep + CepP̄pCT
ep)rrrddd(k)

}

(12)

where Pθ(−1) = 0 and P̄p =
∑N

q=1 λpqPq.

From (12) and Definition 3, if ‖ddda‖22,E = ‖G∼rdrdrdrrrddd‖22,E =

‖rrrddd‖22,E, i.e., the following equations hold:





BepBT
ep + AepP̄pAT

ep = Pp

BepDT
ep + AepP̄pCT

ep = 0
DepDT

ep + CepP̄pCT
ep = I

(13)

then Grrrd is co-isometric. Relabel p = i and q = j, and then
(13) turns to (9). ¤

Remark 3. The representation of G∼rdrdrd is not unique. In
arriving ddda(k) above, we have utilized the fact that for
∀ µµµ and ςςς with appropriate dimensions, a sufficient condi-
tion that E{µµµ} = E{ςςς} holds, if µµµ = ςςς, which is different
from the result by the Dirac function approach in [19].

Based on Lemmas 1 and 2, we are now in position to
give the main result of this paper.
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Theorem 1. Under Assumptions A1 and A2 are ful-
filled, the following matrix pair:

Lo,i = (BdddiD
T
dddi + AiP̄o,iC

T
i )(DdddiD

T
dddi + CiP̄o,iC

T
i )−1 (14)

Vo,i = (DdddiD
T
dddi + CiP̄o,iC

T
i )−

1
2 (15)

with
Rddd,i = DdddiD

T
dddi + CiP̄o,iC

T
i > 0

gives an optimal solution to the FDF design problem, where

Po,i =

N∑
j=1

λijPo,j

is the solution of the following coupled Riccati equation:

Po,i=AiP̄o,iA
T
i +BdddiB

T
dddi−(BdddiD

T
dddi+AiP̄o,iC

T
i )×

(DdddiD
T
dddi+CiP̄o,iC

T
i )−1(BdddiD

T
dddi+AiP̄o,iC

T
i )T

(16)

Proof. Let rrro(k) be the optimal generated residual for
the FDF design problem. Since system (3) is linear, by
applying Lemma 1, we know that there exists an operator
Qr such that

rrr(k) = rrrf (k) + rrrddd(k) = Grrrffff(k) + Grdrdrdddd(k) =
Qrrrrrro(k) = Qrrr(rrro,f (k) + rrro,ddd(k))

where rrro,f (k) = rrro(k)|ddd(k)=0 and rrro,ddd(k) = rrro(k)|fff(k)=0,
which shows that

rrrddd(k) = Qrrrrrro,ddd(k)

On the other hand, consider the operator Grd that maps
ddd 7→ rrr in system (3) , we have:

rrro,ddd(k) = Grdrdrd,oddd(k)

where Grdrdrd,o = Grdrdrd|Li=Lo,i,Vi=Vo,i , which concludes that

Grdrdrd = QrGrdrdrd,o

Similarly, we have:

Grrrf = QrrrGrrrf,o

where Grrrf,o = Grrrf |Li=Lo,i,Vi=Vo,i .
Hence,

‖Grrrf‖∞
‖Grdrdrd‖∞ =

‖QrrrGrrrf,o‖∞
‖QrrrGrdrdrd,o‖∞

According to Lemma 2, we know that if the following
equations hold

Po,i = (Bdddi − Lo,iDdddi)(Bdddi − Lo,iDdddi)
T +

(Ai−Lo,iCi)P̄o,i(Ai − Lo,iCi)
T (17)

(Bdddi − Lo,iDdddi)D
T
dddiV

T
o,i + (Ai − Lo,iCi)P̄o,iC

T
i V T

o,i = 0 (18)

Vo,i(DdddiD
T
dddi + CiP̄o,iC

T
i )V T

o,i = I (19)

then, Grd is co-isometric.
Thus, according to Theorem 4.5-2 in [31] and Definition

2, we have that

‖Grdrdrd‖∞ = ‖G∼rdrdrd‖∞ = sup
〈ddda(k), ddda(k)〉
‖rrrddd(k)‖22,E

=

sup
〈(QrrrGrdrdrd,o)

∼rrrddd(k), (QrrrGrdrdrd,o)
∼rrrddd(k)〉

‖rrrddd(k)‖22,E

=

sup
〈rrrddd(k), QrGrdrdrd,oG∼rdrdrd,oQ

∼
rrr rrrddd(k)〉

‖rrrddd(k)‖22,E

= ‖Qrrr‖∞

and the following inequality immediately establishes

‖Grrrf‖∞
‖Grdrdrd‖∞ =

‖QrrrGrrrf,o‖∞
‖QrrrGrdrdrd,o‖∞ ≤ ‖Qrrr‖∞ · ‖Grrrf,o‖∞

‖Qrrr‖∞ = ‖Grrrf,o‖∞

which gives the optimal value of maximizing the perfor-
mance index ‖Grrrf‖∞/‖Grdrdrd‖∞.

Furthermore, by solving (19), Vo,i can be derived as

Vo,i = (DdddiD
T
dddi + CiP̄o,iC

T
i )−

1
2

Substitute Vo,i into (18), Lo,i can be obtained as

Lo,i = (BdddiD
T
dddi + AiP̄o,iC

T
i )(DdddiD

T
dddi + CiP̄o,iC

T
i )−1

Finally, with the aid of Lo,i and Vo,i, (17) converts to the
coupled Riccati equation (16). From [34], we know that if
the assumptions A1 and A2 are satisfied, (16) has a positive
semi-definite stabilizing solution Po = (Po,1, · · · , Po,N ).
Moreover, due to Theorem 3.1 in [35], one can conclude
that when the stabilizing solution exists, system (3) is mean
square stable.

Following the same idea, we can prove that

‖Grrrf‖−
‖Grdrdrd‖∞ =

‖QrrrGrrrf,o‖−
‖QrrrGrdrdrd,o‖∞ ≤ ‖Qrrr‖∞‖Grrrf,o‖−

‖Qrrr‖∞ = ‖Grrrf,o‖−

i.e., the matrix pair of (Lo,i, Vo,i) is also an optimal solu-
tion to maximizing the performance index ‖Grrrf‖−/‖Grdrdrd‖∞,
which completes the proof. ¤

Remark 4. It is worth mentioning that the optimal
solution to problem (4) is not unique. For any real constant
β, we have:

‖βGrrrf‖∞
‖βGrdrdrd‖∞ =

‖Grrrf‖∞
‖Grdrdrd‖∞ or

‖βGrrrf‖−
‖βGrdrdrd‖∞ =

‖Grrrf‖−
‖Grdrdrd‖∞

which implies that the matrix pair (Lo,i, βVo,i) is also an
optimal solution to (4). For solving the coupled Riccati
equation (16), there exist many computational algorithms,

see for example[36−37] and references therein.
Remark 5. Note that if the set Ω contains only one

mode, the results in this paper will coincide with the one
given in [15−16, 38] for the infinite horizon case, while if
Ai, Bi, Bdddi, Bfi, Ci, Ddddi and Dfi are time-varying deter-
ministic matrices, our results will be identical with the one
in [15−16] by choosing V(k) = xxxT

a (k)P (k)xxxa(k).
Remark 6. With different problem formulations,

the existing results in [23, 25] can solve a two-objective
H∞/H∞ FD problem which should generally be realized
by solving two H∞-type Riccati inequalities while the pro-
posed theorem gives a unified solution to both H−/H∞ and
H∞/H∞ FD problems and only needs to solve one H2-type
Riccati equation. Meanwhile, our solution is analytical and
independent from the fault distribution matrices Bf (θ(k))
and Df (θ(k)), which is computationally simple.

3 Numerical examples
Example 1. To illustrate the effectiveness of the pro-

posed method, a classical economic system proposed in [39]
will be considered in the following difference equation form
(For more details, please refer to [28, 40−41] and the refer-
ence therein)





CCCE
t = cYYY t−1

JJJ t = w(YYY t−1 − YYY t−2)
YYY t = CCCE

t + JJJ t + GGGt
E

(20)

where CCCE is the consumption expenditure, YYY is national
income, JJJ is induced private investment, GGGE is government
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expenditure, c is marginal propensity to consume, w is the
accelerator coefficient, and t is the subscript for time with
t = kT = k (T = 1). From (20), by defining xxx(k + 1) =
[xxx1(k +1) xxx2(k +1)]T and letting xxx1(k +1) = xxx2(k) xxx2(k +
1) = Yk, we have:

xxx(k + 1) = Axxx(k) + BGGGE(k)

where

A =

[
0 1
−w 1− s + w

]
, B =

[
0
1

]

s is marginal propensity to save which is related to c by
c = (1 − s). There exist three different economic scenar-
ios, i.e., “Norm”, “Boom” and “Slump”, which changes
from one mode to another in a Markovian jump sense. The
abrupt economic events or emergent political factors can be
modelled as the fault occurence in the system. We consider
the above system with the following stable system matrices
calculated in [28] with

A1 =

[
0 1

−0.5 −0.2

]
, A2 =

[
0 1

−0.7 0.4

]

A3 =

[
0 1

0.3 −0.2

]

Bf1 = Bf2 = Bf3 =

[
0

−0.5

]

Bd1 = Bd2 = Bd3 =

[
0

0.1

]

C1 = C2 = C3 =
[

0 1
]

Df1 = Df2 = Df3 = 0.9, Dddd1 = Dddd2 = Dddd3 = 0.4
p11 = 0.67, p12 = 0.17, p13 = 0.16
p21 = 0.30, p22 = 0.47, p23 = 0.23
p31 = 0.26, p32 = 0.10, p33 = 0.64

We choose

J(k) =

√√√√ 1

k

k=kT∑

k=0

rrrT(k)rrr(k)

as the residual evaluation function, where kT denotes the
length of the evaluation time window. The corresponding
threshold is Jth = supf(k)=0 E{J(k)}. The unknown input

ddd(k) is shown as in Fig. 1 and θ(k) changes as shown in
Fig. 2. The fault signal is simulated as

fff(k) =





1, k ∈ [20, 40]
−1, k ∈ [60, 80]
0, else

Applying Theorem 1, we have:

L1 =
[

0.0059 0.2493
]T

, V1 = 2.4911

L2 =
[

0.0122 0.2511
]T

, V2 = 2.4888

L3 =
[

0.0063 0.2451
]T

, V3 = 2.4915

Fault fff(k) and the corresponding residual rrr(k) are dis-
played in Fig. 3. Fig. 4 shows the residual evaluation func-
tion for both fault-free and faulty cases. It can be seen
from the simulation results that the generated residual can
deliver fault alarms soon after the fault occurs.

Fig. 1 Unknown input ddd(k)

Fig. 2 The operation mode θ(k)

Fig. 3 Fault fff(k) and residual rrr(k)

Fig. 4 Residual evaluation function J(k)
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Example 2. For the purpose of illustrating the advan-
tage of the proposed method in this paper, we compare it
with the two-objective method addressed in [23]. Consider
the two-mode MJLS given in the following form taken from
[23]

A1 =




0.1 0 1 0
0 0.1 0 0.5
0 0 0.2 0
0 0 0 0.1




A2 =




0.3 0 −1 0
−0.1 0.2 0 −0.5

0 0 −0.2 0
0 0 0 −0.5




Bf1 = Bf2 =
[

1 1 2 −2
]T

Bddd1 = Bddd2 =
[

0.8 −2.4 1.6 0.8
]T

C1 = C2 =

[
0 1 0 1
1 0 1 0

]

Df1 = Df2 =
[

2 −1
]T

Dddd1 = Dddd2 =
[

0.2 0.4
]T

p11 = 0.2, p12 = 0.8, p21 = 0.6, p22 = 0.4

The unknown input ddd(k) is still shown as in Fig. 1 and the
fault signal is simulated as

fff(k) =





0.3, k ∈ [20, 40]
−0.3, k ∈ [60, 80]
0, else

Applying Theorem 1, we have:

L1 =




1.1169 1.3664
−5.1180 −3.3317
3.2727 2.2831
1.6652 1.1293




L2 =




2.0747 0.8907
−4.7665 −3.5017
3.3262 2.2515
1.7529 1.0716




V1 =

[
3.2952 −0.2294
−0.2294 1.8917

]

V2 =

[
3.3260 −0.4484
−0.4484 1.9852

]

Figs. 5 and 6 display the generated residuals using different
methods. It can be seen from the simulation results that
our proposed algorithm can generate much more sensitive
residual signals than the two-objective method in [23] when
an incipient fault occurs.

Fig. 5 Generated residual rrr1(k)

Fig. 6 Generated residual rrr2(k)

4 Conclusion
In this paper, the problem of optimal fault detection for

discrete-time MJLS has been investigated. An observer-
based FDF has been considered as a residual generator and
the design of the FDF has been formulated in the frame-
work of maximizing stochastic H−/H∞ or H∞/H∞ per-
formance index. A unified solution has been obtained by
solving a coupled Riccati equation in terms of a generalized
operator-aided optimization method. The achieved result
has been illustrated by numerical examples.
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