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Total PLS Based Contribution Plots for Fault Diagnosis

LI Gang1 QIN Si-Zhao2 JI Yin-Dong3 ZHOU Dong-Hua1

Abstract Multivariate statistical process monitoring (MSPM) is an efficient data-driven fault detection and diagnosis approach for
complex industrial processes. Partial least squares or projection to latent structures (PLS) is one of the latent projection structures
used in MSPM, which uses process data X and quality data Y together. In this paper, we discuss a new fault diagnosis approach
based on total projection to latent structures (T-PLS). Four kinds of monitoring statistics are used in T-PLS, and a new definition
of variable contributions to T 2 of PLS is proposed. Then, definitions of variable contributions to all statistics are derived to identify
the faults. Control limits for contribution plots are calculated to identify whether a variable is in abnormal situation or not. Further,
the proposed method separates the identified variables into faulty variables related to Y and unrelated to Y more clearly than
conventional method. A case study on Tennessee Eastman process (TEP) indicates the efficiency of the proposed approach.
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On-line monitoring and diagnosis of process operating
performance and conditions are extremely important for
the safety and reliability of industrial systems or processes.
As a data-driven process monitoring methodology, multi-
variate statistical process monitoring (MSPM) is known to
be effective for detecting and diagnosing faults or abnormal
operating situations in many industrial processes, such as
chemical plants and microelectronics manufacturing plants.
Multivariate projection methods such as principal compo-
nent analysis (PCA) and partial least squares or projection
to latent structures (PLS) are used to provide a model for
process monitoring, built from a large data set obtained
in normal operating condition[1−4]. Using these models,
large numbers of highly correlated measured variables are
projected onto a low-dimensional latent space and a resid-
ual subspace, respectively. Two kinds of statistics are used
to monitor the variations in two kinds of subspaces. By
observing the statistics on-line, the faults or abnormal sit-
uations from the processes can be detected.

PCA structure is widely used to monitor all the abnormal
situations that happen in the process variables X. If one
is interested in monitoring the abnormal situations that
are influential on quality data Y , one should build a PLS
from the data X and Y [5]. The purpose of a PLS model is
to approximate both process and quality variables and to
model the relationship between them. PLS model has been
used to estimate quality variables in industrial processes
and to monitor process operating performance for a long
time[6−8]. Although PLS model is used similar to PCA
model, the properties of PLS model are different from PCA
model. Li first revealed the geometric properties of PLS for
process monitoring and compared the monitoring policies
using different PLS models[9].

In regular PLS, there are usually many components ex-
tracted from X for predicting Y . As a result, the PLS
model is complex to interpret. Furthermore, PLS com-
ponents also contain the variations orthogonal to Y . In
order to improve and modify PLS model, Wold proposed
the orthogonal signal correction method[10]. The idea was
to remove systematic information in X orthogonal to Y
before using PLS algorithm. Fearn then reported another
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way of estimating the orthogonal components[11]. Trygg
and Wold presented orthogonal PLS method based on the
regular PLS algorithm[12]. The above methods are all pre-
processing methods. On the other hand, the residual part
of regular PLS model, which still contains large variations,
is not proper for Q statistic to monitor. Zhou proposed the
total PLS (T-PLS) algorithm to improve the performance

of monitoring based on the regular PLS[13]. T-PLS is a
postprocessing algorithm based on the regular PLS algo-
rithm. It divides the whole X-space into four subspaces,
and uses four statistics to monitor the variations respec-
tively, which can increase the fault detection rate and re-
duce the false alarm rate for the faults related to Y .

Once a fault has been detected, it is important to diag-
nose an assignable cause for it. One of the solutions for
this problem is the use of contribution plots, which shows
the contribution of each process variable to the calculation
of fault detection index[5, 14−17]. A high contribution of
a process variable usually indicates a problem with that
variable. Although there are other methods in multivariate
statistical process monitoring (MSPM) to identify a cause,
contribution plots approach seems to work well in practice,
as it does not need the historical information of the faults.

In this paper, we propose a fault diagnosis approach
based on the T-PLS algorithm. Four kinds of statistics
are revisited and analyzed. In particular, we define and
derive the variable contributions to all statistics in T-PLS
based monitoring. Then, the proposed approach is applied
to the Tennessee Eastman process (TEP), which has large
amounts of process and quality variables. The fault related
to Y attracts more attention usually; hence the T-PLS is
efficient to monitor the TEP .

The remainder of this paper is organized as follows. Sec-
tion 1 presents a brief introduction of T-PLS algorithm.
Then, fault detection based on traditional PLS and T-PLS
are reviewed in Section 2. In Section 3, the variable con-
tributions to the four monitoring statistics are defined and
derived. We describe the TEP and illustrate the fault di-
agnosis of TEP using the T-PLS based diagnostic method
in Section 4. Finally, we present conclusions in the last
section.

1 T-PLS algorithm

Given input matrix X ∈ Rn×m consisting of n samples
with m process variables per sample, and output matrix
Y ∈ Rn×p with p quality variables per sample, we can
use nonlinear iterative partial least squares algorithm (NI-
PALS) to project (X, Y ) to a low-dimensional space defined
by a small number of latent variables (ttt1, · · · , tttA), where A
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is the PLS component number[5]. In PLS, the scaled and
mean-centered X and Y are decomposed as

{

X = TPT + E
Y = TQT + F

(1)

where T = [ttt1, · · · , tttA] is the score matrix, P = [ppp1, · · · ,pppA]
is the loading matrix for X, and Q = [qqq1, · · · , qqqA] is the

loading matrix for Y . In PLS procedure[5], weight matrix
W is used to calculate score matrix T . However, W cannot
relate T to the original process data X. Therefore, De Jong
proposed the original weight matrix R , which can be used
to calculate the score matrix T directly from X [18]:

T = XR (2)

where R is obtained by P and W :

R = W (PTW )−1 (3)

We obtain the T-PLS based on (1). The T-PLS algo-
rithm for multiple quality variables Y is given in Algorithm
1[13]. Using the T-PLS algorithm, we can model X and Y
as

{

X = TyPT
y + ToP

T
o + TrP

T
r + Er

Y = TyQT
y + F

(4)

where Ty ∈ Rn×Ay , To ∈ Rn×(A−Ay), and Ty ∈ Rn×Ar are

three score matrices, and Py ∈ Rm×Ay , Po ∈ Rm×(A−Ay),
and Pr ∈ Rm×Ar are the corresponding loading matrices.
Qy ∈ Rp×Ay is the new loading matrix for Y responding to
Ty, Er = E(I − P rP

T
r ) is the new residual matrix. Ay is

the number of Y -related components, and Ar is the number
of Y -unrelated components.

Algorithm 1 (T-PLS algorithm for multiple out-
puts).

Center and scale the raw data to give matricesX and Y .
Step 1. Perform the NIPALS PLS algorithm on X and

Y as shown in (1), where PLS component number A is
determined by cross-validation;

Step 2. Ŷ = TQT = TyQT
y , and run PCA on Ŷ with

Ay components, where Ay = rank(Q);

Step 3. X̂ = TPT, PT
y = (TT

y Ty)−1TT
y X̂;

Step 4. X̂o = X̂ − TyPT
y = ToP

T
o , and run PCA on X̂o

with A − Ay components;
Step 5. E = TrP

T
r + Er, and run PCA on E with Ar

components, where Ar < m − A is determined using PCA
methods.

Compared with PLS model in (1), the T-PLS model in
(4) is clear for describing the variations in X according
to Y . In the T-PLS model, Ty represents the variations
related to Y in score matrix T of regular PLS model, To

represents the variations orthogonal to Y in T , Tr is the
major part of original E, and Er is the residual part of
E which reflects the noise. Theoretical analysis indicates
that T-PLS has the same prediction power of Y as PLS.
The basic properties of T-PLS are as follows[13] .

tttTi tttj = 0,∀ ttti, tttj ∈ Col{Ty , To, Tr} (5)

TT
o Y = 0 (6)

where (5) indicates the orthogonality among score vectors,
and (6) shows To is orthogonal to Y . Further study shows
the equivalence between T-PLS and O-PLS in the decom-
position of T .

2 T-PLS based fault detection

Regular PLS based method monitors the variations in
principal subspace by T 2 statistic and residual subspace by
Q statistic, respectively. Given a new sample xxx, score and
residual are calculated as[5]

ttt = RTxxx
x̃xx = (I − PRT)xxx

(7)

then, T 2 and Q are calculated as[17]

T 2 = tttTΛ−1ttt ∼
A(n2 − 1)

n(n − A)
FA,n−A,α

Q = ‖x̃xx‖2 ∼ gχ2
h,α

(8)

where Λ =
1

n − 1
TTT , A is the number of PLS compo-

nents, and n is the number of training samples. FA,n−A is
F -distribution with A and n − A degrees of freedom. gχ2

h

is the χ2-distribution with scaling factor g and h degrees of
freedom. α defines the significance level (1 − α) × 100 %.

T-PLS can be used for process monitoring in a similar
way. In the T-PLS, Ty , To, and Tr contain the system-
atic part of the process variation, thus are suitable for T 2

statistics, while Er represents the residual part of the whole
process variation, thus is suitable for Q statistic. For a new
or future measured sample xxx, the scores and residual are
projected onto the T-PLS model as follows[13] :

ttty = QT
y QRTxxx ∈ RAy (9a)

ttto = PT
o (P − P yQT

y Q)RTxxx ∈ RA−Ay (9b)

tttr = PT
r (I − PRT)xxx ∈ RAr (9c)

x̃xxr = (I − P rP
T
r )(I − PRT)xxx ∈ Rm (9d)

Assuming the measured sample follows a multivari-
ate normal distribution, we obtain confidences for
T 2

y , T 2
o , and T 2

r using the F -distribution[14] . On the other

hand, the control limit for Q is calculated using the χ2-
distribution[14] on the assumption that a residual vector
is multivariate normal. The control limits of statistics are
listed in Table 1[13]. For all statistics, 99 % confidence lim-
its are obtained. If the statistics of the new sample fall
into these limits, the process is considered to be in control
statistically.

Table 1 Monitoring statistics and control limits

Statistic Calculation Control limit

T 2
y tttTy Λ−1

y ttty
Ay(n2 − 1)

n(n − Ay)
FAy,n−Ay,α

T 2
o tttTo Λ−1

o ttto
(A − Ay)(n2 − 1)

n(n − A + Ay)
FA−Ay,n−A+Ay,α

T 2
r tttTr Λ−1

r tttr
Ar(n2 − 1)

n(n − Ar)
FAr,n−Ar,α

Qr ‖x̃xxr‖
2 (S/2µ)χ2

2µ2/S,α

Notes: Λy = 1

n−1
TT

y Ty, Λo = 1

n−1
TT

o To, Λr = 1

n−1
TT

r Tr, S

is the sample variance of Q, and µ is the sample mean of Q.

According to the relation between PLS and T-PLS, T 2

and Q statistics in PLS model monitor the same variations
as the union of T 2

y and T 2
o statistics and the union of T 2

r

and Qr statistics in T-PLS model, respectively. However,
it has been shown that T 2

y and Qr detect the faults related

to Y while T 2
o and T 2

r detect the faults unrelated to Y .
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It has been validated further that for the faults related to
Y , T-PLS based methods can increase the detection rate
and reduce the false alarm rate, compared with PLS based
methods[13].

3 Contribution analysis for fault diag-
nosis

When an abnormal variation, which does not meet nor-
mal operating condition, is detected by the monitoring
statistic, a further analysis may be needed to diagnose
which variables may cause the abnormal event. One of the
popular approaches for fault diagnosis in data-driven meth-
ods is to use a contribution plot. A contribution plot repre-
sents the contribution of each process variable to the statis-
tic which exceeds the control limit. In regular PLS based
monitoring, three kinds of contribution plots are commonly
considered: the contributions of each variable to T 2, Q, and
each score. Here, we propose a new calculation of contribu-
tion to T 2 statistic, and meanwhile derive the contributions
to four statistics that are used in T-PLS based monitoring.

3.1 Variable contributions to QrQrQr

The Qr monitors the abnormal situation in the residual
subspace, which is not present in the normal operation con-
dition data. As Qr can be seen as the sum of the squared
residuals of each variables:

Qr = ‖x̃xxr‖
2 =

m
∑

i=1

x̃2
r,i (10)

the contributions to Qr are defined as

C(Qr, i) = x̃2
r,i (11)

where x̃r,i represents the i-th element of x̃xxr.

3.2 Variable contributions to TTT 2 statistics

In regular PLS based monitoring, there have been several
approaches to calculate the contribution of each variables to
T 2 statistics. Nomikos suggested the variable contribution
to the T 2 statistics as follows[14] :

C(T 2, i) =
A

∑

k=1

tkλ−1
kk pikxi (12)

where tk is the k-th score, λkk is the variance of tk, and pik

is the element of P in i-th row and k-th column k. This cal-
culation assumes that the loading matrix P is orthogonal,
which is satisfied in PCA model but not in PLS model. In
order to extend the above approaches into PLS and other
models, Westerhuis defined a generalized contribution to
T 2 statistic as follows[15] :

C(T 2, i) = tttTΛ−1[(PTP )−1pppT
i xi] (13)

where pppi ∈ RA×1 is the i-th row of P , and

ttt = (PTP )−1PTxxx (14)

is the new calculation of scores. This new definition of vari-
able contributions to T 2 works if score vectors and loading
vectors are not orthogonal. However, this approach is still
an approximation in the case of PLS based monitoring[17].
As the two previous methods mentioned above result in
negative contributions[15], Qin defined the variable contri-
bution as[16]

C(T 2, i) = ‖Λ−1/2pppT
i xi‖

2 (15)

which is suitable for PCA-based monitoring. As an exten-
sion of the above approach, Choi proposed the calculation
suitable for the PLS model as[17]

C(T 2, i) = ‖Λ−1/2rrrT
i xi‖

2 (16)

where rrri ∈ RA×1 is the i-th row of weighing matrix R for
original data matrix X.

However, this definition does not meet the decomposition
condition, that is,

T 2 = xxxTRΛ−1RTxxx = ‖
m

∑

i=1

Λ−1/2rrrT
i xi‖

2 6=
m

∑

i=1

C(T 2, i)

In this paper, we provide a new definition of variables
to T 2 types of statistics. Let Γ = (RΛ−1RT)1/2; the T 2

statistic can be rewritten as

T 2 = ‖Γxxx‖2 =

m
∑

i=1

‖γγγixxx‖
2 (17)

where γγγi is the i-th row of Γ. So, the exact variable contri-
butions to T 2 statistic can be defined as

C(T 2, i) = ‖γγγixxx‖
2 (18)

Unlike the above approaches, (18) shows the contribution
of one variable to T 2 is related to not only itself but also
other variables, which is consistent with the variable con-
tributions to Q or Qr statistic. In T-PLS, T 2

y , T 2
o , and

T 2
r are all T 2 type of statistics, so the variable contribu-

tions to these statistics can be defined as (18) according to
Table 2.

Table 2 Variable contributions to T 2 type of statistics

Contribution Calculation Γ2

C(T 2
y , i) ‖γγγy,ixxx‖

2 RQTQyΛ−1
y QT

y QRT

C(T 2
o , i) ‖γγγo,ixxx‖

2 R(P T − QTQyPT
y )PoΛ−1

o ×

PT
o (P − P yQT

y Q)RT

C(T 2
r , i) ‖γγγr,ixxx‖

2 (I−RPT)PrΛ−1
r PT

r (I−PRT)

3.3 Control limits for contribution plots

In the early application of contributions, one used to
compare contributions of different variables to the same
statistic and choose the variables corresponding to the rel-
atively large contributions as the possible causes for abnor-
mal situation. However, it is not reasonable to compare
the absolute magnitudes of variable contributions because
they are usually different even in the normal process con-
dition. It is necessary to derive a control limit for fault
diagnosis just as fault detection policy. Westerhuis pro-
posed the idea of deriving the control limits for variable
contributions to statistics[15]. Choi provided the upper con-
trol limits for each variable contribution to four monitoring
statistics based on the multi-block PLS model[17]. In our
study, we use the calculations for each variable contribution
C to statistics in T-PLS as follows[17] :

Cα = µ(C) + 2.3263 · s(C) (19)

where µ(C) and s(C) are the sample mean and standard
deviation of the contribution C, respectively, assuming that
the variable contribution is approximately normally dis-
tributed. The confidence level α is selected as 99%.
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Instead of comparing the absolute contribution and the
corresponding control limit, the use of the relative contri-
bution of C/Cα is a more convenient way to identify faulty

variables[17]. In this case, the relative contributions of all
variables are equivalent statistically under normal condi-
tions.

4 Application study: Tennessee East-
man process

In order to demonstrate the efficiency of T-PLS based
contribution plots, the Tennessee Eastman benchmark data
are used for fault detection and diagnosis. The TEP was
created by the Eastman Chemical Company to provide a
realistic industrial process for evaluating process control
and monitoring methods[19]. The process consists of five
major units: a reactor, condenser, compressor, separator,
and stripper; it contains eight components: A, B, C, D, E,
F, G, and H. The gaseous reactants A, C, D, and E and
the inert B are fed to the reactor where the liquid products
G and H are formed. The species F is a by-product of the
reactions. The reactions in the reactor are

A(g) + C(g) + D(g) → G(liq)
A(g) + C(g) + E(g) → H(liq)

A(g) + E(g) → F(liq)
3D(g) → 2F(liq)

(20)

4.1 Process and fault description

The reactions are irreversible, exothermic, and approx-
imately first-order with respect to the reactant concentra-
tions. The reaction rates are Arrhenius functions of tem-
perature where the reaction for G has a higher activation
energy than the reaction for H, resulting in a higher sensi-
tivity to temperature. The reactor product stream is cooled
through a partial condenser and then fed to a vapor-liquid
separator. The vapor exiting from the separator is recy-
cled to the reactor feed through a compressor. A portion
of the recycle stream is purged to keep the inert and by-
product from accumulating in the process. The condensed
components form the separator (stream 10) are pumped to

a stripper[20].
The TEP contains two blocks of variables: the manip-

ulated variable (MV) block of 12 manipulated variables
and measurement variable (MEAS) block of 41 measured

variables[20]. Process measurements are sampled with in-
terval of 3 minutes. 19 composition measurements are sam-
pled with time delays that vary from 6 minutes to 15 min-
utes, which are taken from streams 6, 9, and 11. This time
delay has a potentially critical impact on product quality
control within the plant. This implies that the fault effect
on product quality cannot be detected until the next sam-
ple of Y is available. During this time, the products are
produced with uncontrolled quality. PLS based monitoring
methods can detect the fault more related to Y compared
with PCA based methods, and thus it has received wide
applications in industrial cases.

There are sixteen known faults and five unknown faults
in TEP[20], denoted by IDV1∼21. IDV1∼7 are associated
with a step change in a process variable, e.g. in the cooling
water inlet temperature. IDV8∼12 are associated with an
increase in the variability of some process variables. IDV13
is a slow drift in the reaction kinetics. IDV14, IDV15, and
IDV21 are associated with sticking valves.

The process used here is operated under closed-loop con-
trol. The simulation code for the TEP in closed loop can
be found on the Web site http://brahms.scs.uiuc.edu. TEP

has been widely used as a benchmark process for evalu-
ating the process diagnosis methods such as PCA, multi-
way PCA, support vector machine, and Fisher discriminant
analysis (FDA)[20]. PLS based method has also been ap-

plied to the TEP[21].

4.2 T-PLS model for TEP

In this study, the compositions of G and H in stream 9,
i.e., MEAS 35 and MEAS 36, are chosen as quality vari-
able Y with a time delay of 6 minutes. 22 process measure-
ments and 11 manipulated variables, i.e., MEAS 1∼22 and
MV 1∼11, are chosen as X. MV 12 is not included because
it does not change during the whole simulation. The 960
normal samples are used to build a T-PLS. First, the sam-
ples are centered to zero mean and scaled to unit variance.
6 components are kept for PLS components according to
cross validation. Ay is 2 in this model, and Ar=17 accord-
ing to PCA based methods. Fig. 1 shows the prediction of
composition of G in stream 9 using T-PLS model. Note
that the T-PLS model has the same prediction power as
PLS model. Based on the normal data, we calculate the
control limits both for monitoring statistics and for vari-
able contributions to these statistics.

Fig. 1 T-PLS model of composition of G

4.3 Example and discussion

Here, we take the IDV1 for an example to illustrate the
proposed approach. When the fault IDV1 occurs, a step
change is induced in the A/C feed ratio in stream 4, which
decreases the composition of A in stream 6 (MEAS 23)
and a control loop reacts to increase the A feed in stream
1 (MEAS 1). The variations in the flow rate and com-
positions of stream 6 to the reactor cause the variations
in the reactor level (MEAS 8), which affects the flow rate

in stream 4 (MEAS 4) through a cascade control loop[21].
Furthermore, the variables associated with reaction such as
pressure and composition of reactants, are also affected cor-
respondingly. Fig. 2 shows the variations in the significant
variables.

The faulty data set consists of 960 samples with sam-
pling interval of 3 minutes. The simulation starts with no
fault, and the fault is introduced to the process from the
8 simulation hours (#160 sample). The fault is detected
both by the T 2 and Q in PLS based monitoring as shown
in Fig. 3. In T-PLS based monitoring, T 2

y and Qr detect the

variations related to Y , while T 2
o and T 2

r detect the varia-
tions unrelated to Y , which provides detailed monitoring.
Fig. 4 indicates that the effect by a fault to each part is
different. This detailed monitoring describes how seriously
the fault affects the output Y . As shown in Fig. 4. T 2

y does
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not exceed the control limit for such a long time as other
statistics. This is because TEP is operated under a closed-
loop control, which keeps pulling the quality Y back to the
set value after the fault occurs. If the process is operated
under an open-loop control, the fault effect will last for the
whole fault period. The fault can be seen as related to Y ,
as Y is indeed affected by the fault. For faults unrelated to
Y , Y is never affected during the whole fault period.

Fig. 2 Dynamics of measured variables for IDV 1 (kscmh
means kilo standard cubil meters per hour.)

Fig. 3 On-line Q and T 2 charts for fault detection using PLS
(Dotted line represents the 99% control limit for statistics.)

Fig. 4 On-line Qr and T 2
y , T 2

o , T 2
r charts for fault detection

using T-PLS (Dotted line represents the 99 % control limit for
statistics.)
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After the fault is detected, the relative variable contri-
butions to each statistic are observed to identify the vari-
ables responsible for this situation. Figs. 5∼7 show the rela-
tive contributions to statistics in PLS and T-PLS. As men-
tioned above, the fault affects quality data significantly in
the early period. Thus, we choose the initial samples (e.g.
#170) after the fault occurs to identify the faulty variables.
In the relative contribution plots, the variables with contri-
bution greater than one can be seen as abnormal and the
variables with top contributions can be seen as the source
to the fault.

Fig. 5 Relative variable contribution plots for Q and T 2 at
the sample #170 (Dotted line represents 1 and RCs means

relative contributions.)

Fig. 6 Relative variable contribution plots for T 2
r and T 2

o at
the sample #170 (Dotted line represents 1 and RCs means

relative contributions.)

From Figs. 5 and 6, it can be seen that the identified
faulty resources by T 2 and Q of PLS are nearly the same
as those by Y -unrelated statistics of T-PLS, which are quite
different from the results by Y -related statistics of T-PLS.
This phenomena is general with samples in the early stage
of the fault, which is because the variations monitored by
Y -unrelated statistics are greater than those monitored by
Y -related statistics. With the mixture property of T 2 and
Q, PLS based contributions are affected mostly by the Y -
unrelated faulty source, which fail to identify the Y -related
faulty resources in this situation. Therefore, the T-PLS
based contribution plots can separate the identified fault
source variables into Y -related and Y -unrelated variables.

However, as contributions can smear from one variable
to another, the variable which is not affected may have a
high contribution. Hence, we should deal with the results of
contribution plots approach carefully based on the process
knowledge.

5 Conclusions

Decomposing the two subspaces of PLS model into four
subspaces further, and performing the fault diagnosis based
on the T-PLS model are very meaningful in monitoring the
processes when the quality variables Y attract much atten-
tion. In this paper, we have dealt with the diagnosis of the
problem using the T-PLS model. First, we reviewed the
four kinds of monitoring statistics based on T-PLS model.
Then, we derived and defined the contributions to these
statistics: T 2

y and Qr are related to Y , T 2
o and T 2

r are un-
related to Y . The upper control limit of each contribution
was obtained. The relative contribution was used to iden-
tify the variables responsible for the abnormal situations
efficiently.

Fig. 7 Relative variable contribution plots for T 2
y and Qr at

the sample #170 (Dotted line represents 1 and RCS means
relative contributions.)

The TEP was taken as an application case study in this
paper. The compositions of products G and H, which we
may concern as the quality variable Y , were modeled and
predicted on-line using a T-PLS model. The fault diagnosis
approach based on the T-PLS model clearly seperated the
identified fault resources into the faulty variables related
and unrelated to Y .
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