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Data Driven Fault Diagnosis and Fault Tolerant Control:

Some Advances and Possible New Directions
WANG Hong1, 2 CHAI Tian-You2 DING Jin-Liang2 BROWN Martin1

Abstract This paper presents a selected survey covering the advances of fault diagnosis and fault tolerant control using data
driven techniques. A brief summary of the general developments in fault detection and diagnosis for industrial processes is given,
which is then followed by discussions on the widely used data driven and knowledge-based techniques. A successful application
example is also given, which deals with faults caused by the misplacement of control loop set points and several areas of potential
future directions are included in the paper.
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Fault detection and diagnosis (FDD) and fault tolerant
control (FTC) have been the subject of considerable in-

terest in the control research community[1−39]. This is in
response to the ever increasing requirements on the reliable
operation of control systems, which are, in most cases, sub-
ject to a number of faults either in the internal closed loops
or from environmental factors. Once system faults have
occurred, they can cause unrecoverable losses and result in
unacceptable environmental pollution, etc. Occasionally,
the occurrence of a minor fault has resulted in disastrous
effects. For example, it has been observed that faults have
caused a 3% ∼ 8% reduction of the oil production in the
United States, leading to $ 20 billion losses in the country′s
economy per year. Also, in 1997, the faults in a chemical
plant in Beijing caused heavy direct losses. Therefore, ef-
fective FDD is of vital importance to the safe operation of
industrial plants. Indeed, FDD and FTC have now become
an integral part of industrial process control.

In general, system faults can be grouped into several
categories, namely, actuator faults, sensor faults, system
faults and also abnormal operating faults caused by either
the misplacement of control loop set points or unexpected
variations in the raw materials to be processed. The pur-
pose of FDD is to use available signals to detect, identify,
and isolate possible sensor faults, actuator faults, and sys-
tem faults. Conversely, FTC calculates the required actions
(either controller modification or reconfiguration) so that
the system can still continue to operate safely even under
faulty conditions[2−3,40]. In terms of condition monitoring
or FDD, the existing methods can also be grouped into the
following two categories:

1) Model based FDD;
2) Data driven FDD including knowledge based FDD.
In the early days (1980′s onwards), model based FDD

constituted the main stream of research, and a number of
techniques were developed. Depending on whether the sys-
tem model can be represented as either a state space model
or an input-output model, FDD can be classified into two
groups: observer based FDD[1] and system identification
based FDD[4]. Also, to combine the best features of these
two approaches, there is another group of FDD methods
called adaptive observer based fault diagnosis, which uses
parameter tuning principles from model reference adap-
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tive control to directly estimate fault parameters online so
that effective fault diagnosis can be achieved[5−6]. How-
ever, model based FDD uses mathematical system models
to estimate the system state and parameters, and in gen-
eral these methods can only be applied to low dimensional
systems.

Alternatively, data driven based FDD can deal with high
dimensional data, and data dimension reduction techniques
are generally used to highlight important information in
the data volume[7−14]. However, there are many important
challenges in its use in FDD, when the system is time-
varying and highly nonlinear. Knowledge based FDD uses
a composition of a knowledge base (such as process in-
put and output variables, abnormal process models, fault
characteristics, operational constraints and assessment cri-
teria) and a set of the qualitative models of the system to

perform the required FDD[15−21]. Typical techniques are
cause-effect analysis based FDD, fault feature tree analy-
sis based FDD, rule based and case based reasoning for
FDD[3].

After a fault has been detected and diagnosed, FTC can
subsequently be used to guarantee the safe system opera-
tion and to prepare for an economical plant repair shut-
down. FTC approaches can be generally classified as ei-
ther passive or active FTC. The former uses the results of
FDD to adjust some parameters of the controller in a simi-
lar manner as the well known adaptive controllers, such as
self-tuning control, whilst the latter uses the FDD results
to reconfigure the controller. A detailed survey on FTC
was published in 2005[2].

1 Challenges as a result of growing sys-
tem complexity

With the ever increasing complexity of industrial sys-
tems, distributed control systems (DCS) have been widely
used to realize whole plant monitoring and control (see
Fig. 1). Typical examples are the processes seen in steel
making, car manufacturing, material processing, paper-
making, chemical plant and mineral processes, etc, where
these production processes are controlled via a multi-layer
computer network. For the system infrastructure shown
in Fig. 1, the lower levels of computers (microprocessors
and PLCs) are used to directly control the individual pro-
cess units on the production line, whilst the higher level
computers are used to manage the overall system opera-
tion and to produce required control loop set points based
on production planning and scheduling results. DCS can
therefore provide a platform for the global management and
optimization of the whole production line to achieve an op-
timal operation in terms of improved product quality, high
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production efficiency, minimized effluent discharge, and re-
duced energy costs, etc.

Fig. 1 DCS based plant-wide performance optimization

The advantage of using DSC systems is that a large
number of process and product quality data is available
for the reliable and optimal operation of the whole pro-
duction line. As complex industrial processes cannot be
easily represented using accurate or first principles math-
ematical models, data driven based FDD and FTC must
be considered. This means that FDD and FTC of complex
industrial systems must effectively use process data from
the production line to identify faults and then use FTC
techniques to realize safe operation of the whole plant until
an economic shutdown can be achieved. It can therefore be
expected that data driven based FDD and FTC techniques
will play an increasingly important role in improving the
reliable operation of complex industrial systems and data
driven based FDD and FTC has already been applied in
many processes[20−31]. In this paper, the following sections
will give a brief survey on these techniques.

With ever increasing automation in complex industrial
systems, there exists a greater chance of unstable system
operation which presents new challenges for FDD. Specif-
ically, as there are many uncertainties in the process and
the complexity of the process includes nonlinearities, time-
varying, and strong coupling effects amongst the variables,
etc, it is generally difficult to establish a plant-wide sys-
tem model and hence perform model based FDD. More-
over, in large scale industrial systems, network based sen-
sors measure process variables and operational variables
such as control loop set points. This data provides the re-
quired information for on-site operators to improve product
quality, production safety, and process efficiency. However,
such large data volumes present difficulties in building pro-
cess models whilst they are very suited for data dimension
reduction and the related FDD.

To perform effective FDD and FTC, in line with the DSC
controlled system structure, Leung proposed to divide the
production line into three layers: lower, middle, and high
layers[15]. In the lower layers, tasks such as data acquisi-
tion, loop control, and signal processing is performed. In
the middle layer, data analysis, process monitoring, and
FDD takes place, whilst in the high layer planning and
scheduling are carried out. As such, a fault can be defined

as one or more parameter deviations from its, or their, nom-
inal values. This constitutes a strict request on the middle
and high level operations of the concerned production line.

At present, FDD units embedded in DCS and SCADA
systems make use of single variable monitoring techniques.
The FDD methods can be represented as classification
based FDD, knowledge based system (KBS), contribution
diagram, qualitative intelligent analysis such as fault tree
analysis, as well as rule based, knowledge based FDD[15]

and case based reasoning[3]. Following the FDD process,
FTC can be realized using system redundancy in terms of
control structure configuration[2].

Condition monitoring, in fact, performs the same task as
FDD, albeit some papers use condition monitoring and oth-
ers use FDD. In this paper, we will not deliberately draw
a clear line between them as their purposes are similar —
finding out faults in the system. Condition monitoring uses
mean and variance statistics of important process variables,
or their magnitude and frequencies as the basis. This in-
cludes multivariable statistics and signal processing based
techniques etc. In terms of the data, nominal operation
data form the basis of data driven FDD.

2 Data driven FDD – from signal based
FDD to multi-variable statistics and
knowledge based FDD

Data driven FDD has gone through three main phases in
its development. These three phases are referred to as sig-
nal based FDD, multi-variable statistics based FDD, and
knowledge based FDD. The common feature of these meth-
ods is that they all use raw system data and process knowl-
edge to carry out the required FDD.

2.1 Signal based FDD

The first group of data driven FDD methods is signal
based. Signal based FDD methods use signal processing
methods consisting of correlation functions, signal model
identification, signal parity checks, and spectral analysis
using fast Fournier transformation and wavelet transfor-
mation. This is similar to the signal detection and trend
detection for important variables using the available data.
The key idea is that unexpected changes in the magnitude,
phase shift and/or frequencies of the important signals can
be regarded as the faults in the system. For example, in [7]
wavelet transformations have been used for FDD in steel
mills. In addition, statistical process control (SPC) has
been applied to detect abnormal distribution changes of
quality data in many production lines so that real-time
alarms are produced when the data lies outside the up-
per and lower distribution limits. In SPC, Shewhart and
Cusum charts have been widely applied to check whether
important variables can be declared as normal or not. How-
ever, since SPC entirely relies on the data of the process
quality, they cannot be used to detect the abnormal statis-
tic distribution of the quality data. For example, if the
quality data is not Gaussian, SPC does not produce a reli-
able test for FDD.

2.2 Multi-variable statistics based FDD

The key concept in principal component analysis (PCA)
is to reduce a high dimensional data volume into a lower
dimensional space, where the low dimensional data con-
tains most of the useful information/variance contained
in the original data set. The projection axes are re-
ferred to as principal components. As such, PCA has
been widely used in industrial process control as a stan-
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dard technique for data analysis and process abnormality
identification[8−9,13,22−23]. In terms of fault detection, a set
of PCA components should be determined for the healthy
data set and then fault detection can be performed by
checking whether or not the new incoming data lies in the
space spanned by the healthy principal components. PCA
divides the whole observable space into a principal compo-
nent subspace and a residual subspace, and then performs
the FDD using Q-test and Hoteling T 2 test. In this context,
the statistics (SPE) used for FDD is given by:

SPE =‖ x̃xx ‖2≤ δ2
α (1)

T 2 = xxxTPΛ−1PTxxx ≤ χ2
β (2)

where xxx is the new data row, x̃xx is the residual and P is
the matrix of healthy principle components and Λ is the
(diagonal) matrix of eigenvalues. The PCA based FDD
process is therefore given by:

Step 1. Data pre-processing in terms of scaling and
filtering, etc.

Step 2. Establish the PCA {P, Λ} of healthy data
set and obtain the thresholds of the statistics SPE and
Hoteling T 2.

Step 3. For a new exemplar xxx, check whether the two
statistics are over their thresholds in (1) and (2). If the
answer is “yes”, then it can be concluded that the system
has a fault. Otherwise, the system is healthy.

Step 4. When a fault is detected, fault diagnosis can
then be performed.

It can therefore be seen that PCA has the advantage
of being able to detect process faults in large multivariate
data sets. However, since PCA does not use direct input-
output relationships, it is more suitable for fault detection
rather than diagnosis. Moreover, PCA assumes that the
data is (multivariate) Gaussian distributed, which limits
its application in complex industrial systems that exhibit a
time-varying, non-Gaussian and nonlinear characteristics.
Therefore, PCA is not suited for dynamic systems with
high nonlinearities and in general a high false alarm rate
can occur.

To overcome this difficulty, modifications to standard
PCA based FDD have been made and dynamic PCA tech-
niques (such as moving PCAs and nonlinear PCAs using
neural networks) have been developed and also applied to
some industrial processes. For example, Ku proposed a
modified PCA[24], where the PCA was applied to a time-
delayed data set and the linear relationships amongst im-
portant variables were retrieved. The key idea was to em-
bed the time delays into the data base so as to compensate
for the time-variations during the PCA phase. A recur-
sive PCA was proposed in [10], where the data matrix was
updated constantly so as to cope with the time-varying
nature of the system dynamics. There are also modified
PCA algorithms for batch processes such as multi-block
PCA techniques. In terms of nonlinear systems, PCA
can be extended using neural network and kernel based
techniques[25]. For example, in the kernel based PCAs, a
nonlinear mapping is used to project the input data into a
high dimensional feature space, then standard linear PCA
can be applied directly to this high dimensional space data
to produce the required fault diagnosis results. Moreover,
to cope with the non-Gaussian nature of the data vol-
ume, minimum entropy based PCA has also been devel-
oped where the principal components are obtained so that
the residual of the recovery error contains the minimum
uncertainty[41].

Alternatively, independent component analysis (ICA) di-
vides the observed data into a linear combination of inde-
pendent components[11]. This allows the use of statistics
charts to perform the required on-line monitoring and fault
diagnosis. An interesting observation is that ICA does not
require the data to be drawn from a Gaussian distribu-
tion, and it is therefore more applicable to industrial pro-
cesses, where typically the data set does not obey a Gaus-
sian distribution. A dynamic independent component anal-
ysis (DICA) technique was proposed in [12], where the ICA
has been used to isolate the non-Gaussian part of the ob-
served data set[11] and the time delayed variables are used
to extend the data matrices so that mutually independent
variables can be easily identified. However, this DICA tech-
nique is not well suited for dealing with slowly time-varying
faults, which are caused by equipment wear and tear, and
false alarms occur when healthy process models are used to
diagnose the faults.

For process data where input-output relationships can
be identified, partial least squares (PLS) can be used as
part of online monitoring techniques. For example, PLS
uses the input and output matrices to locate the optimal
vector-orientation based on predictability from the input
to output space. Indeed, PLS is a modeling technique for
input and output data and as such, the PLS based fault
diagnosis works using a contribution of input variables to
predict the quality data in production lines. There are
also a number of industrial processes which are regarded
as batch processes, where the data volume enters the DCS
in a batch-by-batch way, and traditional continuous-time
based techniques cannot be directly used to perform the
required FDD and also FTC. In this case, there are three
approaches, namely, the multi-way PCA, ICA, and PLS
that can be used[19, 42−43].

2.3 Knowledge based FDD as one of active aspects
for data driven FDD

Using continuously accumulated process knowledge,
knowledge based FDD can be applied to perform online
monitoring for industrial processes[15]. Since the pro-
cess knowledge is obtained from operational system data,
knowledge based FDD can also be regarded as data driven
FDD. Knowledge based FDD includes cause-effect analy-
sis, expert systems and classification, where the cause-effect
analysis uses the model, such as symbolic graphs or fault
trees, of the fault to obtain the required fault diagnosis.
Expert systems, however, attempt to mimic the reason-
ing phase of human experts to carry out FDD tasks and
the classification phase uses the relationship between the
data and the faults to perform the required fault diagnosis.
Moreover, to make best use of the gained knowledge, combi-
nations between fuzzy logic and neural networks have been
used for knowledge based FDD[32, 44−46]. For example, one
can use fuzzy logic to analyze the residual signals for fault
diagnosis[46], and the fault diagnosis threshold can also be
made adaptive in response to process nominal changes[32].
Moreover, neural network based FDD[44−45] uses the avail-
able mapping between the process variables and the faults
to identify the system faults. Neural networks have also
been used to carry out residual signal analysis and classify
the residual signals into healthy and unhealthy categories.

As discussed above, multi-variable statistic based FDD
uses the data to obtain the information on the system faults
and abnormal operation. However, fault diagnosis is gen-
erally difficult to perform as the method itself does not
make use of available knowledge of the system. As such,
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Fig. 2 Technical process and control of the shaft furnace

FDD should also involve the use of the process knowledge.
This constitutes a group of methods referred to as com-
bined data driven and knowledge based FDD[15−17, 33]. An
example is the well-known KBS technique, which uses his-
torical operational data and understanding and the rules of
the process to perform the required FDD. This technique
is therefore suited to industrial processes where dynamic
models are difficult to establish. However, since the accu-
racy and the sensitivity to the faults are not high, KBS
is only suitable for simple variable detection. As such, by
combining multi-variable statistics with KBS, this can im-
prove the accuracy of the fault diagnosis process. The basic
idea is to use multi-variable statistics to realize the process
monitoring and use KBSs to explain the statistic data pro-
duced by the multi-variable statistics. This procedure is
therefore given by the following steps:

Step 1. Use multi-variable statistics techniques to
invoke the knowledge base.

Step 2. Apply the contribution diagram to identify
the fault.

Step 3. Use knowledge from KBS, process behavior
and process operational knowledge to estimate the faults
and then produce the required actions.

However, this method is largely based on expert rules
and qualitative models of the system, where the statistics of
the raw data is transferred into simple information for the
fault diagnosis. Further development is therefore necessary
so as to enlarge the dimension of the knowledge base and
the raw data[15−20].

2.4 Applications of multi-statistics based FDD

The application of data driven FDD has been success-
fully achieved in a number of different industries such
as chemical plants, drug production, and steel mills, etc.
In chemical engineering applications, data driven FDD
has been applied to crystallization[21], fermentation pro-
cesses, continuous stirred tank reactor[22, 24, 26] and waste
water treatment plant[27]. Successful applications have also
been made to the benchmark Eastman processes[9, 12, 28].
Moreover, data driven FDD has also been successfully ap-

plied to semi-conductor production[23], steel industry, drug
production[29−31] and roughing mill[14, 34], etc.

3 Abnormality caused by improper
control loop set points: an example
system

As previously described, abnormal operational condi-
tions can also be regarded as faults in industrial processes.
One of the issues related to process abnormality is the de-
termination of control loop set points supplied by the top
level to the bottom level of the DCS systems as shown
in Fig. 1, where inappropriate control loop set points can
also lead to faults. This is particularly true for systems in
which human operators are used to determine the control
loop set points. As such, it is important to develop novel
FDD and FTC techniques so that the faults caused by the
improper selection by on-site operators of control loop set
points can be diagnosed and prevented by the relevant FTC
techniques. In this section, a successful application of such
a technique, namely the FTC of a shaft furnace roasting
system[3], will be described.

3.1 Shaft furnace roasting process and its charac-
teristics

In the shaft furnace roasting system, the purpose is to
effectively transfer the weak-magnetic low-grade ore into
strong-magnetic ore[3]. A shaft furnace structure is shown
in Fig. 2, where the process consists of the ore feeding, ore
preheating, deoxidizing, cooling and discharge phases. In
the ore feeding phase, the raw hematite ore is dropped
into the furnace through an ore-store slot and a square
funnel at the top of the shaft furnace. Once the ore are
fed into the furnace, they will go through the preheating
phase, where the ore is preheated to reach a temperature
of between 100 ◦C and 150 ◦C through their contacts with
the ascending hot gas. Ore heating is an important phase
in the operation of the shaft furnace where two combus-
tion chambers heat the ores to the required temperature
range of 700 ◦C ∼ 850 ◦C. This is achieved using the heat
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Fig. 3 Operation control strategy for the roasting process of shaft furnace

produced by the inflammation of air-mixed heating gas in
these combustion chambers, which take the heating gas as
the input. The control of the heating gas flow is achieved
by a temperature control system whose set point y∗1 in
Fig. 2 should be correctly selected. The deoxidizing phase
is used to produce a chemical reaction such that the hot
low-magnetic ore from the heating zone are deoxidized to
high magnetic ore. This chemical reaction is partly de-
fined by the flow rate of the deoxidizing gas, which is con-
trolled via a local control loop around the valve denoted
by V2. The set point y∗2 to this local loop is another im-
portant variable that needs careful selection. Cooling and
discharge are the final stages, where the ore are cooled by
pouring them into a water-sealed pool via two ore-ejection
rollers. Then, the ore are discharged out of the furnace by
two belt-conveyer machines that run synchronously with
their corresponding ejection rollers. This two belt-convey
system is driven by two motors and the start-stop opera-
tions of these two motors define the discharging time. It is
therefore important to obtain the correct set point (i.e., y∗3
as denoted in Fig. 2) for the control systems of these two
motors.

This is a semi-batch process where ore feeding and dis-
charge are realized periodically. In this process, magnetic
tube recovery rate (MTRR) has been used as an index for
both the product quality and process efficiency. Subject to
temperature variations in the combustion chamber, the flow
rate of the gas fuel and the ore discharge time, the system
exhibits large nonlinearities and strong coupling between
each loop. Specifically, the feeding and discharge phases
are performed in a synchronized way. For this process, the
key issue is that the ore should be kept in the deoxidizing
phase for a particular time, so that the metal recovery per-
centage can be maximized. In the reaction zone, the weak
magnetism ores (i.e., Fe2O3) are turned into strong mag-
netism ores (Fe3O4). The chemical reactions during deoxi-
dization depend on the reaction temperature, the density of
the reactants and the reaction time. In the roasting process
of shaft furnace, the reaction temperature is determined by
the temperature of the combustion chamber and the ore dis-
charging time. The density of the reactants is determined
by the flow rate of the deoxidization gas, whilst the reaction
time is decided by the ore discharging time. As a result,
the MTRR is primarily influenced by the control quality on
the combustion chamber′s temperature, the flow rate of the
deoxidization gas and the ore discharge time. To achieve
the desired control performance of these local control loops
and to ensure that the system operates far away from pos-
sible fault condition′s, the set points to these local con-

trol loops need to be carefully selected during the process
operation.

3.2 Faults caused by operator′s misplacement of
control loop set points

Since the system models for this process vary with the
operating conditions and are generally difficult to establish,
the set points of each control loop are determined using
the operational experience of operators. Moreover, when
the source ore is subjected to unpredictable variations in
their size, grades, and composition, the set points of each
control loop cannot be accurately determined. This leads
to inaccurate control of the performance indicators and of-
ten faults develop such as fire-emitting, ore-melting, and
under-deoxidization. These faults are classified as abnor-
mal system operation caused by the three set points.

Under such faulty conditions, operators modify the set
points for the combustion temperature, the gas fuel flow
rate and the ore discharge time using operational experi-
ence together with a visual inspection of the surface status
of the furnace. This can cause the actual operating points
to gradually drift away from healthy operational conditions.
Moreover, since the operators cannot always determine the
operation condition correctly and modify the set points in
time, the control performance will deteriorate and even lead
to the system failure. Therefore, the roasting process con-
trol in the furnace operation is a key factor that not only
affects the product quality, efficiency and various consump-
tions, but is also heavily related to the operational stability
and safety. It is therefore imperative that set points are cor-
rectly selected so that the whole system operates far away
from the fault conditions.

3.3 An FTC solution

To solve this problem, a hybrid intelligent control
method for the optimal process operation has been
developed[3] with the purpose of controlling all the tech-
nical indices to their desired ranges by on-line adjustment
of the control loop set points in response to the variations in
working-conditions. The proposed method is composed of
a pre-setting model for control loops, a feed forward and a
feedback compensator, an MTRR prediction model, a fault
diagnosis unit and a fault-tolerant controller as shown in
Fig. 3.

As illustrated in Fig. 3, the fault working condition di-
agnosis model identifies faults such as fire-emitting, ore-
melting, and under-deoxidization caused by incorrect set
points. This is followed by a fault tolerant controller which
provides the necessary adjustments to the three set points
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Fig. 4 Data driven multi-scale models for FDD and FTC

so that the required FTC can be achieved to keep the op-
erating conditions away from the faults. Case-based and
rule-based reasoning has been used in these two blocks to
realize the required functions.

The proposed FDD and FTC methods have been suc-
cessfully applied to the roasting process of twenty-two shaft
furnaces in one of the largest mineral processing factories
in China, where the MTRR has been controlled within its
targeted range with an increased rate of 2 %. Moreover,
the operational efficiency of all the equipment has been im-
proved by 2.98% and the metal recovery percentage has
been increased by 2.01% with a total of 0.57% increase on
the concentrated grade.

4 Possible future directions

In this section, a number of research issues that should be
addressed in the near future will be discussed. Specifically,
issues related to data driven modeling, probability density
function based FDD and FTC, collaborative systems FDD
and FTC, are described.

4.1 Multi-scale plant-wide modeling for FDD and
FTC

As previously described, data based FDD and FTC face
various challenges to make them practically useful as an
integrated part of complex industrial processes. Primar-
ily, data driven models should be considered because they
have the advantage of exploiting the large volume of process
data that exists in DCS systems (see Fig. 1). Once these
data driven models are established, they can be used for a
number of purposes — plant-wide optimization, plant-wide
performance monitoring, and of course FDD and FTC.

Complex industrial processes are examples of sequen-
tially arranged multi-agent systems where each production
unit is connected in series so as to process the required in-
termediate products. Each product unit can be regarded
as an agent and each agent would have a number of control
systems so as to make it autonomous. Each agent has its
own performance that needs to be considered in the plant-
wide optimization and control. The agent′s performance
can be characterized in terms of its control performance,
energy efficiency and the local environment impact. There-
fore, an important difference from traditional modeling ap-
proaches, where only control function models are used, is
that other criteria such as agent′s energy model should also
be used for data driven FDD and FTC. For example, in
paper-making processes[35], the production line consists of
a number of sections that are connected in series as shown
in Fig. 4.

In this figure, the top layer represents the process struc-
ture where there is a number of production units connected
sequentially (from the pulp preparation, wet end, forming,
press, drying to the final paper web winding phase). This
arrangement turns the original raw materials (either wood
chips or deinked pulps) into the finished paper. Along the
production line, various control systems are used and the
typical DCS (see Fig. 1) has been employed for many years.
Traditionally, one would establish control models for each
production units along the production line so as to opti-
mize the effect of process control. However, with the ever
increasing focus on energy reduction, the energy consump-
tion of each unit needs to be considered in order to assess
the plant-wide energy performance. This means that one
should establish along the production line, energy models,
and energy supply — usage distribution models. Therefore,
data based modeling should aim to establish multi-scale
plant-wide models for the systems. Here, the multi-scale
models mean that these models work together and have
different focuses such as process dynamic models and en-
ergy consumption models, etc.

Potential future research on multi-scale modeling could
focus on investigating where process data should be best
used for modelling of sequentially linked multi-agent sys-
tems. For example, along a general material processing
production line, each unit (agent) accepts the material to
be processed from the previous unit. Its purpose is to pro-
cess the material so that it will have the required properties
after passing through the unit. One can therefore represent
the vector of material properties as Xn and Xn+1, prior
to entering and after leaving the n-th unit, respectively.
Then, the following structure represents the functioning of
the n-th unit.

XXXn ⊕UUUn[tn, tn+1] ⇒XXXn+1 (3)

where UUUn[tn, tn+1] are the control variables applied in
the n-th unit between time tn and tn+1 so as to trans-
form the material properties from XXXn into XXXn+1, and
∆tn = tn+1 − tn is the time duration for the material to
pass through the n-th unit. Although different plants will
have different models for each of the sequentially arranged
units, the above structure can be generally applied as a sig-
nal pathway representation of material flow. In this con-
text, the relationship between {XXXn,UUUn} and XXXn+1 can be
generally represented as dynamic and possibly stochastic
equations which are to be determined.

In (3), XXXn has components represented either by time-
dependent variables (such as strength of the materials, etc)
or by variable distributions (such as the particle size dis-
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tributions represented by a probability density function
(PDF) in polymerization processes). Moreover, the compo-
nents in XXXn can be classified into two groups, namely mea-
surable and un-measurable components. Since UUUn[tn, tn+1]
can be either the control inputs to each unit or the set
point values from the DCS top layer, the obtained models
will be multi-layer in structure. In addition, the communi-
cation between each unit and across each layer should also
be considered in the modelling phase. The model therefore
has a multi-layer structure in terms of control loops in each
unit and the material properties transformations between
XXXn and XXXn+1. As all the units are connected in series, the
time delay of each unit with respect to the final products
will be taken into account. Specifically, the reference time
can be selected as the time when the products are produced.
Due to the variations in the processing duration when the
materials pass through each unit, these time delays will be
time-varying in nature. It is expected that a general multi-
scale model structure which takes into account of process
dynamics will be developed for each agent as well as the
whole system.

Using the models in (3), one of the future areas of re-
search is to develop global PDF models that link relevant
control variables in each production unit with the PDF of
the final quality variables. For this purpose, a back prop-
agation modelling procedure will be developed that links
various unit model together via the time delay and pro-
cess inherent multi-layer connections so as to form the fol-
lowing global and conditional PDF model for production
qualities[36].

γ(yyy,UUUk) = γ(yyy,UUUN [tN−1, tN ],UUUN−1[tN−2, tN−1], · · · ,

UUUn[tn−1, tn], · · · ,UUU1[t0, t1])

UUUk = (UUUN [tN−1,tN ],UUUN−1[tN−2, tN−1], · · · ,

UUUn[tn−1, tn], · · · ,UUU1[t0, t1]) (4)

where UUUk denotes all the controllable variables of the sys-
tem. When the sectional control variables are high di-
mensional, PCA algorithms can be used for data reduc-
tion so as to reduce the dimensionality of UUUk. There-
fore, the final control vector that appears in the quality
variables′ PDFs will be either in terms of the original vari-
ables or in a projected subspace. Probability theory can
also be applied to each sectional model to develop the qual-
ity variables′ PDFs, where the recently developed recursive
PDFs model[36−37, 47] can also be used.

Indeed, research into such data driven multi-scale models
would therefore constitute a potential starting point for
data driven FDD and FTC that are discussed in the next
subsection.

4.2 PDF based FDD and FTC using multi-scale
plant-wide models

In line with the multi-scale models built for industrial
processes discussed in Subsection 4.1, FDD and FTC can
also be developed and traditional FDD and FTC, either
model-based or data-based, can be used to deal with the
faults for individual agents. However, a possible new re-
search direction would be to investigate the quality data
distribution of each agent or the final production quality.
It is well-known that the product quality monitoring has
been used for many years, however, the existing techniques
are generally based on monitoring the means and the vari-
ances of important product quality variables in the data
stream. This assumes that the process quality data is Gaus-
sian distributed, however, for complex industrial processes,
the quality data distribution is generally non-Gaussian. Of-

ten, it is only during healthy operation that the quality data
distribution is approximately Gaussian distributed.

This phenomenon provides a potential insight towards
the realization of data based FDD and FTC for complex
industrial plant. For example, when the quality data PDF
is not Gaussian, then it may indicate that there is either
a fault in the process or a variation in the raw material.
As such, the purpose of fault diagnosis is to firstly classify
whether the non-Gaussian PDF is caused by the material
variations or by a process fault. Once it has been confirmed
that the non-Gaussian PDF is caused by the process fault,
further fault diagnosis analysis is performed to locate the
fault and estimate its size. In this context, observer based
fault diagnosis can be used, where PDF residuals[38−39, 48]

are constructed for the sequential PDF models. Adaptive
tuning rule-based fault diagnosis methods can be devel-
oped so as to guarantee the performance of the fault diag-
nosis. Once the fault diagnosis results are obtained, they
will be combined with the relevant FTC control algorithm
so that the whole plant-wide control strategy will be fault
tolerant[49]. Moreover, FTC design can also be made to
minimize the entropy of the quality data so that a consis-
tent product quality with minimum uncertainty (random-

ness) can be achieved[50−52].

5 Conclusions and other challenging is-
sues

Although multi-variable statistics based FDD has been
applied to many industrial processes, there are still a num-
ber of challenging issues that need to be addressed. For
example, multi-variable statistics based FDD is much more
effective for fault detection rather than for fault diagnosis.
Another issue that needs to be addressed is how effective
combinations can be made between the data based FDD
and the knowledge based FDD[17−18]. Both methods make
use of a large data volume, yet a combination of the human
knowledge with process data needs to be made autonomous
so as to apply them effectively to industrial processes. Prac-
tical issues are also important in applying data based FDD.
This is because of the nonlinear, time-varying, batch and
large scale nature of the systems that are widely seen in
industrial processes. These characteristics make the avail-
able FDD algorithms complicated and novel techniques for
data driven FDD need to be further explored.

Another potential area of research is the development
of effective FDD and FTC for collaborative control sys-
tems. Consider an industrial process that is structured
as a sequentially arranged multi-agent system. When an
agent has been diagnosed to have a fault, it is important
to explore how the subsequent healthy agents can be re-
organized so that the end product is minimally affected.
For example, in the paper making process illustrated in
Fig. 4, when there is a fault in the pulp preparation unit so
that the water content of the wet fiber entering the forming
section is too high, then an FTC action should be made in
the forming and drying sections so that the moisture con-
tent in the finished paper can still meet the product quality
specification. Of course, such FTC should also be able to
minimize the energy consumptions and other process spec-
ifications when energy distribution models are also used.

Fault prediction is also a potential research area[53] in
line with data driven based FDD and FTC. When a fault
can be predicted, then an earlier FTC action can be made
to prevent its occurrence. Indeed, fault prediction has been
studied before in 1993 by the first author[54] of this pa-
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per, where the dynamics of the faults were represented by
a first order state space model, and the original system
input-output model was used as an extended output equa-
tion with respect to the fault dynamic model. Under this
structure, the well-known Kalman filter can be applied to
predict the faults for the required length of the time hori-
zon.

To conclude, FDD and FTC for dynamic systems have
been an area of intensive study and many successful process
data based algorithms and their applications have been re-
ported in the literature. Therefore, this paper does not aim
to be a complete review, rather it is a collection of topics
that the authors believe are important for dealing with data
driven FDD and FTC for complex industrial processes.
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