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A Support Vector Regression Approach for Recursive

Simultaneous Data Reconciliation and Gross Error
Detection in Nonlinear Dynamical Systems

MIAO Yu1 SU Hong-Ye1 CHU Jian1

Abstract The quality of process data in a chemical plant significantly affects the performance and benefits gained from activities
like performance monitoring, online optimization, and control. Since many chemical processes often show nonlinear dynamics,
techniques like extended Kalman filter (EKF) and nonlinear dynamic data reconciliation (NDDR) have been developed to improve
the data quality. Recently, the recursive nonlinear dynamic data reconciliation (RNDDR) technique has been proposed, which
combines the merits of EKF and NDDR techniques. However, the RNDDR technique cannot handle measurements with gross errors.
In this paper, a support vector (SV) regression approach for recursive simultaneous data reconciliation and gross error detection in
nonlinear dynamical systems is proposed. SV regression is a compromise between the empirical risk and the model complexity, and
for data reconciliation it is robust to random and gross errors. By minimizing the regularized risk instead of the maximum likelihood
in the RNDDR, our approach could achieve not only recursive nonlinear dynamic data reconciliation but also gross error detection
simultaneously. The nonlinear dynamic system simulation results in this paper show that the proposed approach is robust, efficient,
stable, and accurate for simultaneous data reconciliation and gross error detection in nonlinear dynamic systems within a recursive
real-time estimation framework. It can also give better performance of control.
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Process data measurements are important for model fit-
ting, process monitoring, control, optimization, and man-
agement decision making. Unfortunately, process data
measurements usually contain two types of errors, random
and gross, which severely impact the effects of process mon-
itoring, control, optimization, and management decision
making. Meanwhile, chemical processes usually exhibit
nonlinear dynamics. So, online estimation of the process
states and removal of random and gross errors from mea-
surements are critical for the application of process moni-
toring, control, and optimization on dynamic nonlinear pro-
cesses. This task is termed dynamic data reconciliation (or

dynamic data rectification)[1−2], which is especially chal-
lenging when the state and/or measurement functions are
highly nonlinear.

In order to ameliorate the effect of random errors, sev-
eral different estimation methods have been proposed. For
linear dynamic systems, the Kalman filters (KF) give opti-
mal estimates in the presence of measurement uncertain-
ties. Further, extended Kalman filters (EKF) were de-
veloped for nonlinear systems, which were based on lin-
earizing the nonlinear equations and applying the Kalman
filter to update equations to the linearized system. The
advantages of the KF and EKF and their variants lie in
their predictive-corrective form and the recursive nature
of estimation, which allows for rapid estimation in real-
time. Since the KF and EKF are not specifically de-
signed to detect and remove outliers, a probabilistic for-
mulation was proposed[2], which combined the EKF with
the expectation-maximization (EM) algorithm to attain the
rectified measurements. However, the KF and all its vari-
ants cannot take into account bounds on process variables
or algebraic constraints, leading to failure of the EKF in
many processes[3]. Furthermore, when the states and/or
measurement equations are highly nonlinear, KF and all
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its variants give unsatisfactory state estimates.
An alternative approach called the recursive nonlin-

ear dynamic data reconciliation (RNDDR) has been

proposed[4], which is an extension of EKF. So, the RNDDR
is preferable for online applications. Moreover, RNDDR
could take account of bounds and algebraic constrains for
state estimation at every instant, which has been applied
to a CSTR model. However, the covariance calculations
encountered in the RNDDR formulation are similar to the
EKF, namely, unconstrained propagation and correction
involving the Kalman gain, which can affect the accuracy
of the estimates. Recently, in order to overcome this dis-
advantage of the RNDDR, an unscented recursive nonlin-
ear dynamic data reconciliation (URNDDR) technique[5]

was proposed, which combined the merits of the unscented
Kalman filter (UKF)[6] and the RNDDR to improve ac-
curacy of the estimates. The application of the UKF to
chemical processes were recently reported[7−8]. However,
both the RNDDR and URNDDR could not reduce the af-
fects of gross errors within the measurements.

More recently, particle filters[9] have attained significant
interest with respect to state estimation, and an applica-
tion of particle filters to dynamic data reconciliation was
proposed[10], whose goal was to attain satisfactory state es-
timates and to detect the presence of gross errors. Though
the particle filters approach could achieve more accuracy
estimates, it usually takes much time and cannot take ac-
count of bounds and algebraic constrains for the state esti-
mation.

Simultaneous data reconciliation and gross error detec-
tion can be addressed as a model identification and param-
eter estimation problem, since gross errors could be consid-
ered as parameters in the data reconciliation model, which
could be estimated by using the reconciled values of the
process variables[11]. Since simultaneous data reconcilia-
tion and gross error detection can be addressed as model
identification and parameter estimation problem, support
vector (SV) regression is introduced. The SV algorithm is
a nonlinear generalization of the generalized portrait algo-
rithm developed in Russia in the sixties of last century.As
such, it is firmly grounded in the framework of statistical
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learning theory, or Vapnik-Chervonenkis (VC) theory,
which has been developed over the last three decades by
Vapnik[12] and others. According to statistical learning
theory, minimizing empirical risk, which will lead to
overfitting and thus bad generalization properties, is re-
placed by minimizing regularized risk with adding a capac-
ity control term to the objective function[13]. Within the
framework of statistical learning theory, or VC theory, the
effects of gross errors could be considered as VC dimen-
sion, so the effects of gross errors could be eliminated from
the estimation of real state variables. With minimizing the
regularized risk instead of the maximum likelihood in the
RNDDR, our approach could achieve not only recursive
nonlinear dynamic data reconciliation but also gross error
detection simultaneously. Meanwhile, we use filtered state
estimates and measurements to estimate real states at right
instant, so the predicted state estimates are not necessary
in our approach, which overcomes the effects of the unac-
curate covariance calculations in the linearized nonlinear
dynamic system model.

In this paper, the merits of the RNDDR and SV re-
gression are combined to obtain an SV regression approach
for recursive simultaneous data reconciliation and gross er-
ror detection in nonlinear dynamic systems. Since this in-
tegration is achieved without sacrificing the recursive na-
ture of the estimation procedure, a more accurate and ef-
ficient real-time recursive simultaneous data reconciliation
and gross error detection for nonlinear dynamic processes
is obtained. The execution of a comparative study between
optimization approach RNDDR and our approach is con-
sidered in this paper, but probabilistic filtering methods
are beyond the scope of this paper.

1 Recursive estimation techniques

In order to motivate the development of our approach,
we first give a brief description of two recursive estimation
techniques for nonlinear dynamic processes, the extended
Kalman filters (EKF), and recursive nonlinear dynamic
data reconciliation (RNDDR), which is based on Kalman
filter.

Consider a process described by the following
continuous-time nonlinear state space model with addi-
tive uncertainties (state noise) and discrete measurements
sampled data at regular intervals:

xxxk+1 = xxxk +

∫ (k+1)∆t

k∆t

fff (xxx (τ) ,uuuk) dτ + wwwk

yyyk+1 = ggg (xxxk+1) + vvvk+1

(1)

In the above model, xxxk+1 is the n×1 vector of state vari-
ables, yyyk+1 is the m × 1 vector of measurements, and wwwk

and vvvk+1 are mutually independent normally distributed
random variables with covariance matrices Qk and Rk+1,
respectively. The subscript k represents time instant tk =
k∆t.

Assume that at time tk we have filtered state estimates
denoted by x̂xxk|k which have been obtained using all the
measurements up to time tk. From these, the predicted
state estimates x̂xxk+1|k at time tk+1 are obtained as

x̂xxk+1|k = x̂xxk|k +

∫ (k+1)∆t

k∆t

fff (xxx (τ) ,uuuk) dτ + wwwk

x̂xxk|k ≡ x̂xx (k∆t) (2)

The predicted state estimates are corrected using the
measurements yyyk+1, and by using the following linear up-

date equation to obtain the filtered state estimates at time
tk+1.

x̂xxk+1|k+1 = x̂xxk+1|k + Kk+1VVV k+1 (3)

where

VVV k+1 = yyyk+1 − ggg
(
x̂xxk+1|k

)
(4)

and matrix Kk+1 is known as the Kalman gain. The com-
putation of the Kalman gain for the EKF is described in
the following section.

1.1 Extended Kalman filter (EKF)

Assume the covariance matrix of errors in the filtered
state estimates at time tk is given by Pk|k. In EKF, the
covariance matrix of errors in the predicted state estimates
at time tk+1 is approximated by linearizing the nonlinear
state space model around x̂xxk|k. The state space matrix for
the linearized continuous time model is given by

Ak =
∂fff (xxx,uuu)

∂xxx

∣∣∣x̂xxk|k,uuuk (5)

The covariance matrix of estimation errors in the predicted
estimates is obtained as

Pk+1|k = ĀkPk|kĀT + Qk (6)

where Āk = exp (Ak∆t) is the state transition matrix for
the equivalent linear discrete system. The Kalman gain
matrix is computed using

Kk+1 = Pk+1|kGT
k+1

(
Gk+1Pk+1|kGT

k+1 + Rk+1

)−1

(7)

where Gk+1 is the linearized measurement model matrix

given by Gk+1 = ∂ggg(xxx)
∂xxx

|x̂xxk+1|k. The covariance matrix of
errors in the updated state estimates is approximated us-
ing

Pk+1|k+1 = (I −Kk+1Gk+1) Pk+1|k (8)

There are several drawbacks associated with EKF, that
is, EKF cannot ensure the estimated states to satisfy
bounds and other algebraic constraints, and the covariance
matrix of estimation errors and Kalman gain are calculated
using an approximated linear model of the process which
can have an adverse effect on the accuracy of the state es-
timates. Furthermore, EKF cannot eliminate the effects of
gross errors within the measurements.

1.2 Recursive nonlinear dynamic data reconcilia-
tion

The update equation for KF as well as EKF can be ob-
tained as the solution of an optimization problem[4]. So the
RNDDR method was developed, which can take account of
algebraic constraints and bound constraints to be satisfied
by state estimates.

Consider the nonlinear dynamic system given by (1).
The bounds and algebraic constraints of states are
xxxL ≤ xxx ≤ xxxU, and algebraic constraints of states are
h (xxx,uuu) ≤ 0, e (xxx,uuu) = 0. Let x̂xxk|k be the filtered esti-
mates at time instant k and the corresponding estimate
error covariance matrix be Pk|k. In the RNDDR method,
the predicted state and the covariance matrix of errors in
the predicted estimates are obtained as in EKF using (2)
and (6), and instead of using (3), the updated state esti-
mates in the RNDDR method are obtained by solving the
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following optimization problem:

min
x̂xxk+1|k+1

(
x̂xxk+1|k − x̂xxk+1|k+1

)T (
Pk+1|k

)−1×
(
x̂xxk+1|k − x̂xxk+1|k+1

)
+

(
ŷyyk+1 − ggg

(
x̂xxk+1|k+1

))T

R−1
k+1

(
ŷyyk+1 − ggg

(
x̂xxk+1|k+1

))
s.t. xxxL ≤ x̂̂x̂xk+1|k ≤ xxxU

h
(
x̂̂x̂xk+1|k,uuuk

) ≤ 0
e
(
x̂̂x̂xk+1|k,uuuk

)
= 0

(9)
Though the above step does not require the measurement

model to be linearized, the covariance matrix of the error
in the updated estimates in the RNDDR method is still
computed using linearized system formulations, which will
still be not so accurate. As the same as EKF, the RNDDR
could not deal with gross errors within the measurements.
We will address these limitations by exploiting the support
vector regression approach.

2 Support vector regression approach
for gross error detection

2.1 Support vector machines and SV regression

Support vector machines bring out a breakthrough of
learning algorithms, which are supported by results of the
statistical learning theory. SV regression estimation seeks
to estimate function as

s (xxx) = (www · xxx) + B, www,xxx ∈ RN , B ∈ R (10)

based on data

(xxx1, y1) , · · · , (xxxl, yl) ∈ RN ×R (11)

by minimizing the regularized risk functional

min
www,Rε

emp

‖www‖2
2

+ C ·Rε
emp (12)

where C is a constant determining the trade-off between
minimizing the training error, or empirical risk Rε

emp, and

the model complexity term ‖www‖2.
The main insight of the statistical learning theory is that

in order to obtain a small risk, both training error and
model complexity should be controlled.

2.2 Gross error detection based on SV regression

The measurement model without gross error can be writ-
ten as

yyy = xxx + εεε (13)

l (xxx) = 0 (14)

where xxx is the vector of true values of the variables, yyy is
the vector of measurements, εεε is the vector of random errors
which is assumed to follow a normal distribution Nz (0,ΨΨΨ),
and l (xxx) is the constraints of xxx.

If gross errors are present in process measurements, the
measurement bias model for biases of unknown magnitude
µ is given by

yyy = xxx + εεε + [b1µ1, b2µ2, · · · , biµi, · · · , bnµn]T (15)

where n is the number of measurements, and bi is an indi-
cator, which indicates the location of biases in the model,
and can be defined as

bi =

{
0, if no gross error presents in the ithmeasurement
1, if gross error presents in the ithmeasurement

(16)

The virtual purpose of data reconciliation and gross er-
ror detection is to estimate the true values xxx of the mea-
surements based on the measurements data. If xxx is also
obtained in prior like yyy, the only task remained is to de-
termine the measurement bias model described in (15).
Meanwhile, the data reconciliation and gross error detec-
tion problem could be addressed as a regression problem,
which seeks to estimate the function in (15) based on data
set (xxx1, yyy1) , (xxx2, yyy2) , · · · , (xxxm, yyym).

Actually, xxx could not be obtained in prior, however, the
constraints of xxx can be obtained instead, which are defined
by the model of process. Then, a regression problem with
a larger degree of freedom is formulated, which aims to
estimate the function

yyy = xxx + εεε + [b1µ1, b2µ2, · · · , biµi, · · · , bnµn]T

bi =

{
0, if no gross error presents in the ithmeasurement
1, if gross error presents in the ithmeasurement

(17)
based on data

l (xxx) = 0 (18)

For the given regression problem proposed in (17) and
(18), SV regression is introduced. As the function of (17)

is linear, according to Vapnik[12], the VC dimension of (17)
is the number of free parameters, which defines the com-
plexity of the measurement bias model and can be written
as

n∑
i=1

bi (19)

So according to (12) and (19), the regularized risk of re-
gression for data reconciliation and gross error detection
is

n∑
i=1

aibi + Rε
emp (20)

We use ai instead of C to compromise between
∑n

i=1 bi

and Rε
emp, because the coefficients of bi relative to the

nonredundant measurements should be different to others,
as will be discussed in the Subsection 3.2.

3 Proposed support vector regression
approach

3.1 Support vector regression recursive nonlinear
dynamic data reconciliation and gross error
detection

It can be seen from (9) that the RNDDR actually uses
empirical risk as the object function. In order to detect
gross error in measurements, we replace the empirical risk
in the RNDDR with (20). Meanwhile, to avoid calculating
Pk+1|k by linearizing the system formulation and obtain the
constraints described in (18), we use filtered states x̂xxk|k and
yyyk+1 instead of x̂xxk+1|k and yyyk+1 to estimate states x̂xxk+1|k+1.

Considering the system in (2), we first introduce some
new variables x̄xxk and x̄xxk+1 as

x̄xxk|k = x̂xxk|k + sssk

x̄xxk+1|k = x̄xxk|k +

∫ (k+1)∆t

k∆t

fff (xxx (τ) ,uuuk) dτ

x̂xxk|k+1 = x̄xxk+1|k + wwwk

(21)

where we consider x̄xxk and x̄xxk+1 to be the true values of
states, and Sk is the covariance matrix of sssk. Because wwwk

and vvvk+1 are usually independent identically distribution,
we assume Sk, Qk, and Rk+1 be diagonal matrices, and S̄k,
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Q̄k, and R̄k+1 are the vectors constructed of the diagonal
elements of Sk, Qk, and Rk+1, respectively. Sk could be
determined by

min
S̄SSk

(
Q̄QQk − S̄SSk

)T
(Qk)−1 (

Q̄QQk − S̄SSk

)
+

(
R̄RRk+1 −Gk · S̄SSk

)T
(Rk+1)

−1 (
R̄RRk+1 −Gk · S̄SSk

)
(22)

where

Gk =
∂ggg (xxx)

∂xxx

∣∣∣∣
xxx=x̂xxk|k

(23)

From (1) and (21), it can be seen that

yyyk+1 = ggg
(
x̄xxk+1|k + wwwk

)
+ vvvk+1 (24)

where Wk is the addition covariance caused by wwwk through
the measurement function, which can be calculated by ggg (xxx)
and the properties of covariance.

If the RNDDR is used to estimate x̄xxk+1|k, it is as

min
x̄̄x̄xk|k

(
x̂xxk|k − x̄xxk|k

)T
(Sk)−1 (

x̂xxk|k − x̄xxk|k
)

+

(
yyyk+1 − ggg

(
x̄xxk+1|k

))T
(Wk + Rk+1)

−1 (
yyyk+1 − ggg

(
x̄xxk+1|k

))

s.t. x̄xxk+1|k = x̄xxk|k +

∫ (k+1)∆t

k∆t

fff(xxx (τ) ,uuuk) dτ

xxxL ≤ x̄xxk+1|k ≤ xxxU

h
(
x̄xxk+1|k,uuuk

) ≤ 0

e
(
x̄xxk+1|k,uuuk

)
= 0

(25)
From (17), (18), (20), and (25), instead of minimizing

the empirical risk, we minimize structural risk considering
with the gross errors as

min
x̄xxk|k,µµµ,bbb

aaaTbbb +
(
x̂xxk|k − x̄xxk|k

)T
(Sk)−1 (

x̂xxk|k − x̄xxk|k
)
+

(
yyyk+1 − YYY −µµµ

)T
(Wk + Rk+1)

−1 (
yyyk+1 − YYY −µµµ

)
(26)

s.t.

l (xxx) =





x̄̄x̄xk+1|k − x̄xxk|k −
∫ (k+1)∆t

k∆t

fff (xxx (τ) ,uuuk) dτ = 0

YYY − ggg
(
x̄xxk+1|k

)
= 0

µµµLbbb ≤ µµµ ≤ µµµ
U
bbb

xxxL ≤ x̄̄x̄xk+1|k ≤ xxxU

bbb = binary
h

(
x̄̄x̄xk+1|k,uuuk

) ≤ 0
e
(
x̄̄x̄xk+1|k,uuuk

)
= 0

(27)
where bbb is a binary vector to indicate which measurement
has gross error, aaa is the coefficient vector of bbb, µµµ

L
, and µµµ

U

are the lower and upper bounds of gross error value µµµ. We
use YYY in order to make (27) easy to be understood in the
form of SV regression, and it is just ggg

(
x̄̄x̄xk+1|k

)
.

The integration in the optimization problem of (27) can
be dealt with in two ways. One approach is to incorporate
the nonlinear differential equations in the solution strategy
by embedding — also called the sequential approach — in
which only the initial state estimates are treated as deci-
sion variables, and the differential equations are integrated
using an initial value ordinary differential equation (ODE)
solver to generate the estimates for all instants within the
time interval[14]. The alternative is to use a simultaneous
approach, in which the differential equations are converted
to algebraic equations by some form of discretization, and

solving the resulting constrained optimization problem[1].
In general, the simultaneous approach is computationally
more efficient than the sequential strategy, and it is used
in this paper. In this work, we make use a collocation
on finite element method based on Lagrangian polynomi-
als to discretize the differential equations. This kind of
problem is also an optimization problem of differential al-
gebraic equations (DAE), which has been discussed and

solved by sequential quadratic program (SQP)[15]. The op-
timization problem of (26) and (27) is a mixed integer non-
linear program, which can be figured out by branch-and-
bound method with SQP[16] as well. In this paper, we used
the Lingo to solve the optimization problem.

From (26) and (27), we can obtain the estimate states
x̄̄x̄xk+1|k and µµµ. As the covariance in (26) is larger than the
measurement covariance, the true values of the gross errors
estimated µµµ should be compensated as

µ̄̄µ̄µ =

{
µµµ + R̄RRk+1, µµµ > 0
µµµ− R̄RRk+1, µµµ < 0

(28)

Then, x̄xxk+1|k, yyyk+1, and µ̄̄µ̄µ are used to estimate real states
x̂xxk+1|k as

min
x̂xxk+1|k+1

(
x̂xxk+1|k+1 − x̄xxk+1|k

)T
Q−1

k

(
x̂xxk+1|k+1 − x̄xxk+1|k

)
+

(
yyyk+1−ggg

(
x̂xxk+1|k+1

)−µ̄µµ
)T

R−1
k+1

(
yyyk+1−ggg

(
x̂xxk+1|k+1

)−µ̄µµ
)

s.t. xxxL ≤ x̂xxk+1|k+1 ≤ xxxU

h
(
x̂xxk+1|k+1,uuuk

) ≤ 0
e
(
x̂xxk+1|k+1,uuuk

)
= 0

(29)
Finally, we can see that the proposed SV approach is a two-
stepped procedure, which first simultaneously estimates
x̄xxk+1|k and detects gross errors µ̄̄µ̄µ, then uses x̄xxk+1|k, µ̄̄µ̄µ, and
yyyk+1 to estimate x̂xxk+1|k+1. This approach does not need
to calculate the predictive covariance matrix Pk+1|k and
Pk+1|k+1 by approximating linearized system model, and
it is a recursive method for simultaneous data reconcilia-
tion and gross error detection which makes it preferable for
online application.

3.2 Coefficient selection

According to Vapnik[12], the coefficients, which deter-
mine the trade-off between minimizing the empirical risk
and the model complexity term, are robust to the result of
SV regression problem. In the SV regression approach for
data reconciliation and gross error detection, the value of
the coefficient aaa determines how sensitive the SV regression
approach is to gross errors, and it is also robust to the re-
sult of data reconciliation. So, the value of coefficient aaa has
little impact on reconciled results. However, the smaller
the coefficient aaa is, the more sensitive the SV regression
approach is to gross errors. If the coefficient aaa is too small,
then random errors would be reconciled as gross errors by
mistake. On the other hand, if the coefficient aaa is too large,
gross errors could not be detected, which would have severe
impact on the result of data reconciliation. In this paper,
we propose a general method for selecting this coefficient.

If all measurements are redundant, the coefficient can be
determined as

ai = 2

(
λi

δi

)2

(30)

where ai is the coefficient relative to the i-th measurement,
λi is the lower bound of the gross error relative to the i-th
measurement, and δi is the standard deviation of the i-th
measurement.
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To make our approach reasonable, we set the lower
bounds of gross errors to be 3 times the value of standard
deviation of measurements.

λi = 3δi (31)

Consequently, if the measurements are all redundant, the
coefficients are identical to be 18, and aaa is equivalent to C
in (12). However, measurements are usually nonredundant,
a case of nonredundant measurements is

Y = g (ym, yu) (32)

where g(·, ·) is a measurement function, Y is a measured
variable, ym is a measured state variable, yu is an unmea-
sured state variable, so Y , ym, and yu are nonredundant.
In this case, the gross errors present in Y are equivalent to
those in ym

[17].
In order to make the proposed SV regression approach

work in this case, the coefficient of Y should be as

aY =

(
λY + ∆gm · λm + ∆gu · λu

δY

)2

(33)

where

∆gm =
∂g (ym, yu)

∂ym

∣∣∣∣
yu=x̂k+1|k,u

∆gu =
∂g (ym, yu)

∂yu

∣∣∣∣
yu=x̂k+1|k,u

(34)

where aY is the coefficient relative to Y . λY , λm, and
λu are the lower bounds of the gross errors relative to Y ,
ym, and yu, respectively. δY is the standard deviation of
the measurement Y . Because yu is unmeasured, we use
x̂k+1|k,u, the estimates of yu, to calculate ∆gm and ∆gu.

Similar to the case of redundant measurements, to make
our approach reasonable, we set the lower bounds of
gross errors relative to measured variables to be 3 times
the values of standard deviation of measurements, and
set the lower bounds of gross errors relative to unmea-
sured variables to be the values of standard deviations of
states.

4 Case study

4.1 Continuous-flow stirred tank reactor descrip-
tion

The schematic of the continuous-flow stirred tank reactor
(CSTR) system is shown in Fig. 1. The process involves an
exothermic reaction A(l) → B(l) + C(l). The temperature
in the reactor is controlled by manipulating the flow rate
of the coolant flowing through the jacket. The level in the
reactor is controlled by manipulating the outlet flow rate
from the reactor. The pressure in the reactor is controlled
by changing the vent gas flow rate. PI controllers are used
to control the temperature, volume, and pressure of the re-
actor. Both the reactor and the jacket are modeled with
perfectly mixed tank dynamics.

The reactor holdup at any time is given by

dV

dt
= Fi − F (35)

The reactant concentration CA is given by

dCA

dt
=

Fi

V
(CAi − CA)− rA (36)

With constant heat capacities and densities, an overall
heat balance on the reactor gives the reactor temperature

as

dT

dt
=

Fi

V
(Ti − T ) +

rA (−∆H)

ρCP
− UA (T − TC)

V ρCP
(37)

Overall heat balance on the jacket gives the coolant tem-
perature as

dTC

dt
=

FC

Vj
(TCi − TC) +

UA (T − TC)

VjρjCPj
(38)

The pressure in the reactor depends on the number of
moles of vapor n. This in turn depends on the rate of reac-
tion and vent (molar) flow rate FV g. The vapor space Vg

is assumed to be constant and vapor is assumed to behave
ideally

dn

dt
= rAV − FV g (39)

PVg = nRT (40)

The reaction rate is given as

rA = CdCAk0e
−E/RT (41)

Table 1 Parameters for the CSTR of Fig. 1

Notation Variable
(Steady state/Constant)

Value

V Volume of liquid in reactor 48 ft3

CA
Reactant concentration

in reactor
0.2345 lb ·mol A/ft3

T Reactor temperature 600 ◦R

n
Number of moles

in gas phase of reactor
28.3656 lb ·mol C

Vg Volume of gas phase (constant) 16 ft3

Fi Inlet feed flow rate 40 ft3/h

CAi Inlet reactant concentration 0.5 lb ·mol A/ft3

TC Jacket temperature 590.51 ◦R

FC Coolant flow rate 56.626 ft3/h

Ti Inlet feed temperature 530 ◦R

Vj Volume of jacket 3.85 ft3

k0 Frequency factor 7.08× 1010 h−1

Cd Catalyst activity 1 or 0.7

E Activation energy 29 900 Btu/lb ·mol

R Universal gas constant 1.99 Btu/lb ·mol◦R

U Heat transfer coefficient 150 Btu/h · ft2◦R

A Heat transfer area 150 ft2

TCi Inlet coolant temperature 530 ◦R

∆H Heat of reaction −30 000 Btu/lb ·mol

Cp Heat capacity (process side) 0.75 Btu/lbm◦R

Cj Heat capacity (coolant side) 1 Btu/lbm◦R

ρ Density of process mixture 50 lbm/ft3

ρj Density of coolant for volume 62.3 lbm/ft3

Kv
PI controller parameter

for volume
1

Tv
PI controller parameter

for volume
1

Kt
PI controller parameter

for temperature
4.3

Tt
PI controller parameter

for temperature
0.0541

Kp
PI controller parameter

for pressure
0.5

Tp
PI controller parameter

for pressure
4
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Fig. 1 Continuous flow stirred tank reactor (CSTR)

Without no accumulation in the pumps, valves, and
jacket, the following relations are obtained:

F3 = F2 = F (42)

F4 = FC = FCi (43)

It is assumed that in addition to the three controlled vari-
ables, the reactor concentration and coolant outlet temper-
atures are also measured using a regular sampling period
of 3 min. It should noted that the four state variables —
V , T , TC , and CA — are measured directly.

Whereas the measured pressure is a nonlinear function
of the state variables n and T . Therefore, this is an nonre-
dundant nonlinear measurements case. The parameters for
the CSTR are shown in Table 1. More details of the case
study can be found in Vachhani[4].

For both the RNDDR and the SV regression approaches,
we used the same parameters of the CSTR, the same stan-
dard deviations, the same PI controllers, and the same
controller set values. States noise with standard devia-
tions 0.5 ft3, 0.1 lb ·mol · C, 0.708 ◦R, 0.005 lb ·mol A/ft3,
and 0.708 ◦R for V , n, T , CA, and TC were intro-
duced. Measurements noises with standard deviations
0.5 ft3, 2 lb ·molA/ft3, 0.708 ◦R, 0.005 lb · mol A/ft3, and
0.708 ◦R were added to the measurements for V , n, T , CA

and TC . We simulated the process of the CSTR within
5 hours, which generated 100 sampling instants. In ev-
ery simulation, 10 % measurements were corrupted by gross
errors, and the corrupted measurements were chosen ran-
domly with an equal probability. The sign of the gross
errors were randomly assigned either “+” or “−” with an
equal probability. The magnitudes of the gross errors were
taken to be between 10 times and 40 times the value of the
standard deviations with an equal probability. We used a
collocation method based on 3-order Lagrangian polynomi-
als to discretize the differential equations. The CSTR was
controlled by PI controller and we used the estimates as
the feedback values to the controller, and the controller set
values of V , T , and P were 48, 600, and 2 116, respectively,
for both the RNDDR and the SV regression approaches in
all the simulations.

For implementing the RNDDR, the initial estimation er-
ror covariance matrix P0 was chosen to be diagonal. The
standard deviations of the errors in the initial estimates of
state variables V , n, T , CA, and TC were chosen to be equal
to the standard deviations of their respective states errors.

The application used to generate data of the simulations
was developed in Matlab. The support vector regression
problems and the RNDDR were solved using LINGO opti-
mization software invoked by Visual Basic.

4.2 Comparison between the RNDDR and the SV
regression approaches

First, we used the same random and gross errors to study
the performances of the RNDDR and the SV regression ap-
proaches. The simulations were carried out with the Cata-
lyst activity Cd as a constant, which was equal to 1. Mean-
while, in order to reveal the robustness of the coefficient
in the SV regression approach, we used the controller set
values to calculate the coefficient vector aaa, which was a con-
stant, aaa = [18, 18, 18, 18, 99.89]T relative to V , CA, T , TC ,
and P , respectively.

Figs. 2 ∼ 7 show the simulation results of the RNDDR,
and Figs. 8 ∼ 13 display the results of SV regression
approach for data reconciliation and gross error detection.
From the figures we can observe that the estimates of the
RNDDR method are corrupted by gross errors heavily be-
cause the RNDDR could not detect any gross error in mea-
surements. With the corrupted estimates by the RNDDR
as the feedback values to controllers, the states fluctuated
tempestuously and they began to deviate from the set val-
ues. Especially, the pressure deviated much far away from
the set value, which was 1 782.398 at the end time, whereas
the set value was 2 116. Furthermore, the curve of pressure
indicates a further deviation from the set value at the end
time.

Fig. 2 The state V estimates by RNDDR
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Fig. 3 The state CA estimates by RNDDR

Fig. 4 The state T estimates by RNDDR

Fig. 5 The state TC estimates by RNDDR

From the results of our approach, it is clear that the SV
regression data reconciliation and gross error detection can
detect most of the gross errors and estimate the values of
gross errors accurately. The states are more smooth and

Fig. 6 The state n estimates by RNDDR

Fig. 7 The state P estimates by RNDDR

nearer to the set point. It can provide a better control
performance of the states. Though our approach cannot
detect all gross errors in the measurements of pressure P ,
the performance of controlled pressure P is better than the
performance of RNDDR, and it shows a trend to follow the
set value opposite to the RNDDR.

The root-mean square (RMS) errors in the esti-
mates (difference between estimated and true values) and
the controller set values (difference between controller set
values and true values) are shown in Table 2 (see page 715).

It can be seen in Table 2 that our approach gives more ac-
curate estimates in all states and measurements. The RMS
errors of the estimates and the controller set values of the
pressure P are a little bit larger than others because P
is a nonlinear nonredundant measure of T and n, and the
covariance of P is much larger. Furthermore, our approach
gives a more smooth control performance. The RMS error
of the state of pressure in our approach is much smaller
than that in the RNDDR, and the pressure estimated and
controlled with our approach could follow the controller
set value, whereas the pressure estimated and controlled
with the RNDDR begins to deviate, which can be seen in
Fig. 7.
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Fig. 8 The state V estimates by the SV regression
regression

Fig. 9 The state CA estimates by the SV regression
regression

Fig. 10 The state T estimates by the SV regression
regression

Fig. 11 The state TC estimates by the SV regression
regression

Fig. 12 The state n estimates by the SV regression
regression

Fig. 13 The state P estimates by the SV regression
regression
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Table 2 RMS errors of estimates and controller set values

RNDDR SV regression approach

Estimates
Controller

set values
Estimates

Controller

set values

V 2.9544 4.9720 0.5927 1.2507

CA 0.0633 – 0.0050 –

T 4.5188 9.5302 1.0947 3.1357

TC 5.7258 – 0.9760 –

n 0.2752 – 0.0702 –

P 14.9855 209.9326 6.0697 67.1516

4.3 The performance with model parameter and
controller set values changing

In this case, in order to study the robustness and sta-
bleness of the SV regression approach, the simulation was
carried out with the catalyst activity Cd changing from 1
to 0.7 at sampling instant 20, and at the same time, the
controller set values changed from 600 to 550 and from
2 116 to 1 900 for T and P , respectively. The random
and gross errors were generated randomly as described
above. The coefficient vector aaa was still a constant as
aaa = [18, 18, 18, 18, 99.89] relative to V , CA, T , TC , n, and
P , respectively.

Fig. 14 The state estimates by the SV regression
approach with model parameter changing

Fig. 14 shows the simulation results. From the Fig. 14, it
can be seen that the SV regression approach could remove
gross errors and provide accurate estimates even when the
controller set values and the model parameter changed dur-
ing the process. In this study, the coefficient vector was also
a constant and both the model parameter and the controller
set values changed, but the SV regression approach could
remove the gross errors and provided accurate reconciled
values as well, because the coefficient in the SV regression
is robust to reconciled result. Meanwhile, the SV regres-
sion could follow the step change of the controller set values
even after the model parameter changed. The stable results
shown in Fig. 14 reveal the stableness of using estimates

reconciled by the SV regression approach as feedbacks to
controllers.

5 Conclusion

An SV regression approach for recursive simultaneous
data reconciliation and gross error detection in nonlinear
dynamic system was presented in this paper. The SV
regression approach is found to be robust and have su-
perior performance. This approach considers the statis-
tical learning theory as the framework of data reconcili-
ation and gross errors detection instead of the empirical
risk, so it can detect gross errors and estimate gross er-
ror values. At the same time, it is based on a recursive
estimation framework, which makes it preferable for on-
line application. Another advantage of our approach is
that no linearized system model is needed, which elimi-
nates the adverse effect on the accuracy of the state and
the covariance matrix estimates by an approximate lin-
ear model of the process. The nonlinear dynamic system
simulation results in this paper show that the SV regres-
sion approach is robust, stable, and accurate for simulta-
neous data reconciliation and gross error detection in non-
linear dynamic systems within a recursive real-time esti-
mation framework. It can also give better performance of
control.

The SV regression approach proposed in this paper
was applied to a widely used model defined in (1)
which constitutes the constraints l (xxx) in the SV re-
gression approach. Furthermore, more complex models
could be used instead of the model defined in (1) to
constitute the constraints l (xxx), then the SV regression
approach proposed in this paper could be extended to
more complex models, which shall be addressed in future
works.
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