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Notes on Data-driven System Approaches
XU Jian-Xin1 HOU Zhong-Sheng2

Abstract In this paper, we present several considerations centered around the data-driven system approaches. We briefly explore
three main issues: the evolving relationship between off-line and on-line data processing methods, the complementary relationship
between the data-driven and model-based methods, and the perspectives of data-driven system approaches. Instead of offering
solutions to data-driven system problems, which is impossible at the present level of knowledge and research, in this article we aim
at categorizing and classifying open problems, exploring possible directions that may offer alternatives or potentials for the four key
fields of interests: control, decision making, scheduling, and fault diagnosis.
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In large scale and complex industrial processes such as
in oil refinery plants, traffic and communication networks,
power grids, aeronautics and astronautics, a most promi-
nent feature is the presence of vast volume of data accom-
panied by the lack of an effective process physical model
that can support control, fault diagnosis, scheduling, and
decision making. Here, the large scale refers to the scale
level from a few dozen to a few thousand variables or nodes,
and the complexity arises from heterogeneous information
sources, multi-modal signals, high non-linearities, strong
interactions among variables or system states, involvement
of human activities, and mixture of tasks from the four key
fields in one integrated process. Often, the direct conse-
quence of the large scale and complexity is the wide spread
system uncertainties that prevent the problem solving from
using a physical model-based approach.

The main objective of this paper is to seek possible al-
ternatives coined by data-driven system approaches in gen-
eral, and off-line data processing technology in particular.
Specifically, we focus on the four key fields of interests and
look into other areas that would provide non-conventional
possible solutions, as shown in Fig. 1.
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Fig. 1 The four key fields of interests are control, decision
making, scheduling, and fault diagnosis. The other four areas

of research considered here are computational intelligence,
data-mining, control system theory, and machine learning

methods.

Though overlapping in certain areas of applications, the
four areas of research cover almost all methods or algo-
rithms that are used in solving problems associated with
various kinds of data, on-line or off-line, homogeneous or
heterogeneous, deterministic or stochastic, etc. Fig. 2 sum-
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marizes briefly the field of data-mining[1−3]. Fig. 3 shows
the field outline of machine learning[4−6]. Fig. 4 presents
several main subfields and approaches in computational
intelligence[7−9]. Fig. 5 gives a glance at the field of the
system control[10−18].

Fig. 2 The outline of data-mining approaches and applications
that could be relevant to data-driven systems in control,

decision making, scheduling, and fault diagnosis

Fig. 3 The outline of machine learning approaches that could
be relevant to data-driven systems in control, decision making,

scheduling, and fault diagnosis

Data-driven approaches have been widely applied to
solve industrial and real-life problems encountered in the
four key fields, including control engineering[19−21], instru-
mentation and measurement[22], computer security[23−24],
power grid and systems[25−26], intelligent transporta-
tion systems and vehicles[27], aerospace[28], circuit de-
sign and integrated circuit scheduling[29], diagnosis and
planning in medicine and rehabilitation[30−31], Inter-
net and web[32], electrical drives[33−34], process industry
supervision[35], manufacturing industries such as semicon-
ductor industry[36].
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Fig. 4 The outline of computational intelligence approaches
that could be relevant to data-driven systems in control,

decision making, scheduling, and fault diagnosis

Fig. 5 The outline of system control approaches that could be
relevant to data-driven systems in control, decision making,

scheduling, and fault diagnosis

Machine learning and computational intelligence ap-
proaches are also widely used to address the problems in
the four key fields of control[37−39], decision making[40−41],
scheduling[42−43], and fault diagnosis[44−46].

It is worthwhile pointing out that the possible combina-
tion of data mining and computational intelligence methods
has been also explored, for instance integrating data mining
with neural network[47], fuzzy logics[48], and evolutionary
algorithms[49].

The recent advances in data-driven system approaches,
as evidenced by preceding discussions and published re-
ports on the applications and theoretical research, provide
a clear picture on the relationship in between the four key
fields of interests — control, decision making, scheduling,
and fault diagnosis, and the other four areas of research
— computational intelligence, data-mining, control sys-
tem theory, and machine learning methods, as described
in Fig. 1.

1 The relationship between on-line and
off-line methods

The central idea of data-driven system approaches is to
use off-line data in some way to enhance on-line data-driven

system approaches when the latter cannot meet the per-
formance requirements. As such, an important issue is to
make it clear the major differences between the off-line data
and the on-line data.

Note that a vast amount of off-line data does not war-
rant the presence or acquisition of new system information
beyond the existing ones from the on-line data. This issue
in a sense is analogous to the richness condition in sys-
tem identification or the persistent excitation condition in
adaptive control. Thus, the first expected characteristic of
off-line data should be the sufficiency, which is illustrated
in Fig. 6, in which the rectangle represents a sample space
with the necessary dimensions and size. The sample space
is a collection of off-line samples shown as dots in the fig-
ure. What we expect from off-line data is the abundance
of samples that evenly spread over the range of interests
in the sample space. Here, a sample could be an action,
a decision, a feature, an observation, etc., which is a se-
quence of off-line data recorded along temporal or spatial
coordinates.

Fig. 6 The sufficiency of the sample space implies the
ergodicity. Graphically, we expect that the samples could be

evenly distributed in the sample space.

Another important characteristic of the off-line data is
the completeness. The off-line data sequence in a sam-
ple should be complete or dense almost everywhere. Often
in industry, the data collection process is incomplete and
data dropout occurs. For instance, in the monitoring pro-
cess of traffic flow in a city, surveillance devices such as
cameras or loop detectors are rather sensitive to environ-
mental conditions such as lighting condition, vehicle size
and speed, or the reliability of devices which may lead to
severe data missing at some period and at some location.
Several issues need to be addressed for the completeness
of off-line data: the necessary level of completeness asso-
ciated with a given task, the evaluation on the complete-
ness, the statistic completeness, and active compensation
for the completeness. Although the completeness is diffi-
cult to achieve in a single sample, it is possible to achieve
the statistic completeness in an ensemble sense. The ac-
tive compensation is to purposely reproduce a sample or
to generate a new sample that can cover the missing parts
from historical records. To achieve the completeness of off-
line data, it is necessary to perform appropriate posterior
analysis, pattern recognition and classification for off-line
data, decide if a deficiency exists, and seek a remedy if it is
possible.

As shown in Fig. 7, on-line data is the reading from a
moving window of appropriate size. In contrast to histor-
ical data obtained off-line, on-line data captures the lat-
est information, reflect varying characteristics of a process
or an event, and are used for real-time systems. Because
on-line data consists of only a portion of a sample, it suf-
fers from local information, data loss, and measurement
bias.
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Fig. 7 On-line data acquisition within a moving window

Clearly, off-line data would contain much richer system
information than on-line data, which motivates researchers
to explore suitable data processing methods or algorithms
so that off-line data can be used as though it is on-line.
A question is whether we need to develop new methods
and algorithms for this goal. There are cases where we can
directly use historical data in real time with little changes
or modifications, such as in iterative learning control. In
other cases, however, off-line data cannot be incorporated
directly, instead it should be incorporated indirectly in the
form of a data-driven model as we will further explore later,
or in an application-specific form such as a rule base, a
lookup table, and a characteristic model, by means of off-
line data processing methods.

It is worth to point out that the available pool of off-line
data processing methods is far ample than that of on-line.
In fact, most theoretical methods and successful applica-
tions in the areas of data mining, machine learning, and
computational intelligence are off-line in nature. If possi-
ble, we should make full use of existing off-line methods
that have been proven to be effective through the vast aca-
demic exploitations and real-life applications.

There are two reasons that justify the extension of off-
line data processing methods in solving on-line problems
associated with the four key fields of interests. First, many
on-line problems from industry are temporally multi-scale,
for instance a mixture of short-term and long-term goals
and actions in control or decision making. As shown in
Fig. 8, the short interval only allows the use of simple real-
time data-processing algorithms, whereas the large interval
allows the use of computationally intensive data-processing
algorithms. As an example, consider the advanced process
control. The real-time control of a valve would be operating
at the temporal scale of seconds, and the decision making
for the blending of end products at the top management
level could be in a quarterly basis. The second reason is
owing to the latest and fast development of microprocessor
technology and parallel computing power, which greatly ex-
pedite the computation speed, and many off-line algorithms
can now be executed in an on-line mode.

In fact, we anticipate this as a new trend in near future

Fig. 8 An example with temporally multi-scale
data processing

so that more sophisticated data-processing methods can be
easily incorporated in real time. As a consequence, the
boundary between off-line and on-line is getting blur, and
more off-line data sets can be used fully or partially to
support or enhance on-line tasks.

2 The complementary relationship be-
tween data and models

It is interesting to note that data-driven system ap-
proaches can also be model based or model driven. In
fact, a physical model developed by the first principle
can be viewed as an indirect data-driven model because
many physical principles, such as Newton′s mechanics and
Kirchhoff′s circuit laws, were invented and verified through
experimental observations that were data based. The main
differences between data and physical models lie in that the
process information provided might be incomplete by the
former but complete by the latter: the former need to go
mining and learning to extract useful information contained
in data, whereas the latter provides the useful information
completely as the direct outcome. Unfortunately, physical
models are difficult or impossible to build up for large-scale
complex industrial processes. In addition, by aggregating
hundreds and thousands of small-scale physical models, we
still face difficulty to understand and handle the underly-
ing characteristics of the large-scale industrial process. We
need to seek and adopt a creative middle way solution. A
possible alternative is to develop data-driven models that
are made to function in a complementary manner to physi-
cal models. In industries, this middle way solution has been
widely used as a part of their endeavors, some representa-
tive examples are rule base, lookup table, and graphics,
which are extracted from off-line data.

Data-driven models can be classified into direct and in-
direct ones. The direct data-driven models aim at the
input-output mapping, and off-line data are used. For in-
stance, a neural network model can be tuned to fit the ob-
served input-output data set. The neural network model,
once established, can handle on-line data directly. Simi-
lar models include well structured filters, hidden Markov
models, and other function approximation models such as
Wavelet model. The indirect data-driven models aim at
feature or attribute extraction from the observed data set.
The feature extraction can be carried out using either data-
mining or unsupervised machine learning methods such as
K-means clustering, or using supervised learning with do-
main knowledge. When handling on-line data, some pre-
filtering would be required to facilitate pattern recognition
or template matching in feature or eigenspace. Fuzzy re-
lation models, expert systems, probability density function
(PDF) based models can be viewed as indirect data-driven

models. An example of data-driven models[50] is shown in
Fig. 9.

Fig. 9 An indirect data-driven model for trip forecasting (The
PDF model is derived from historical trip data, which plays the
role as a nominal model for long term forecasting; the predictor

rectifies the outcome of the PDF model using on-line data.)
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The disadvantage of data-driven modeling, which is ob-
vious, links to the limits of on-line and off-line data, such
as the incompleteness of data due to loss, uncertainty, bias,
etc. An alternative is to combine data-driven models with
physical models, subsequently form a hybrid model. The
fusion of two classes of models can be carried out in dif-
ferent ways. First, for a process of interests, whenever a
physical model is available, there is no need to develop a
data-driven model. Data-driven models are required only
when physical modeling is infeasible or too costly to de-
velop. In this way, the data-driven model can be viewed as
a subspace model to cover the missing parts of a physical
model.

Second, when a large-scale industrial production process
consists of many subsystems, it would be easier to model in-
dividual subsystems and a physical model can provide use-
ful input-output relationship for a single component. How-
ever, we may lose insight on the interactions among multi-
ple loops and the global behavior of a large-scale system,
even though we could have the complete physical model
for each of the components. In such circumstances, a data-
driven model could be used to capture the predominant
variables or principal components, decisive factors, and re-
lations. Model reduction and characteristic model[51] are
two representative approaches. The two key points for this
kind of modeling approaches are the search for suitable
model candidates and the selection of criteria for model
validation. Domain knowledge plays a critical role, and
therefore, niche areas are preferred. It remains an open
issue on how to evolve into a universal modeling method.

Third, when an industrial production process is in a hi-
erarchical structure, it is easier to model lower level com-
ponents that consist of well defined physical variables and
well known physical process models, for instance, at the
level of actuation control, sensing, or component level fault
identification and isolation. However, it may be difficult
or impossible for us to find a meaningful global physical
model at higher level, which actually involves non-physical
factors such as human activities, cost and profit assessment,
and soft constraints, for instance, at the level of schedul-
ing with task assignment and optimization or at the level
of planning with task generation and decision making. In
such circumstances, data-driven models will be again useful
and the vast amounts of off-line data can contribute to the
establishment of such data-driven models.

Let us consider a large-scale industrial system, such as
an advanced process control system, and see what kinds
of data-driven models can be applied to address the four
issues associated with control, decision making, schedul-
ing, and fault diagnosis. A concept diagram of an ad-
vanced process control system is shown in Fig. 10, in which
we omit the information flow from bottom upwards for
simplicity.

First, look into the control issue using data-driven sys-
tem approaches. The traditional controller design based on
the physical model is shown in Fig. 11. Although the con-
troller design can be carried out off-line, its effectiveness
relies on the accuracy of the physical model, which is usu-
ally difficult to guarantee due to many factors such as high
dimensions, nonlinearities, data loss, sampling limit, and
randomness. A possible solution to this problem, as shown
in Fig. 12, is to delink the physical model from the design
model that is used for controller design. Since the ultimate
objective of a controller is to meet control performance re-
quirements instead of seeking modeling accuracy, we can
use a simpler design model that is a lower order and re-
duced dimensional model in comparison with the original

physical model, so long as the characteristic responses of
the design model and physical model are consistent. In fact,
this idea had been used in the transient response method
for PID autotuing proposed by Ziegler-Nichols more than
six decades ago[21], where the design model for PID set-
ting is a simple first-order plus dead-time model regardless
of the original physical process. By incorporating power-
ful data-mining and machine-learning methods developed
in the past few decades, we can apply this method to much
more complicated industrial systems, though there is still
a long way to go. A more generic control system candidate
is illustrated in Fig. 13.

Fig. 10 A hierarchical structure of an advanced process
control system (There are four levels: decision making,

scheduling, control and fault diagnosis, continuous process and
batch process. On the left, four objectives associated with each

level are the planning, optimization, design, and process
modeling, respectively. On the right, from top-down the three
jobs in the four levels are task generation, task assignment, and

measurement, respectively. At each level, data are collected
when the system is in operation. Thus, the vast amounts of

off-line data are available for processing, analyzing, and
information acquisition.)

Fig. 11 A traditional controller design method in which the
design model is the same as the physical process model

Fig. 12 An alternative controller design method in which the
design model can be a lower order approximation of the actual

physical process model
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Fig. 13 A prototype of data-driven control systems that can
sense and handle heterogeneous data, conduct feature analysis

and extraction, perform correlation analysis, characteristic
pattern matching, and forecasting

Second, look into the fault diagnosis issue using data-
driven system approaches. A data-driven system approach
for fault diagnosis and fault tolerance control is shown in
Fig. 14. When multiple jobs are assigned to a number
of manufacturing units, a hidden faulty unit would de-
grade the product quality. Through continuous monitor-
ing and analysis, the change of product quality in terms
of the PDF distribution can be detected. A non-Gaussian
type distribution implies the presence of one or a few hid-
den faults. After the fault detection, fault types can be
identified and faulty components can be isolated by means
of the input-output mapping of each manufacturing unit.
Based on the results of fault diagnosis, the fault tolerance
controller will reassign jobs among normal units. It may
happen that faults are not from a manufacturing unit but
from some incorrect reference setting, and the direct re-
tuning of setpoints will solve the problem. Here, fault
tolerance control can be viewed as a part or scheduling
tasks.

Fig. 14 A data-driven system approach for fault diagnosis and
fault tolerance control

Next, look into the scheduling issue using data-driven
system approaches. The block diagram of a suggested data-
driven approach is shown in Fig. 15. Analogous to preced-
ing case, the states of manufacturing units will be clustered
in terms of feature extraction and analysis. Next, off-line
learning methods, for example, the reinforcement learning,
are employed to generate an input-output mapping or a
decision machine, which can be either dynamic or station-
ary, of manufacturing units with job assignments as inputs
and operation schedules as outputs. With the so-generated

decision machine, real-time scheduling or rescheduling is
practically implementable with respect to newly assigned
jobs or unexpected variations.

Fig. 15 A data-driven system approach for dynamic or
real-time scheduling in presence of uncertain events or

disturbances

Fig. 16 shows another possible schematic of data-driven
system approaches for model-based monitoring and quality
prediction. The off-line data is used to model the corre-
lation among principal variables; accordingly the produc-
tion process can be segmented into a number of intervals
each with a state-space model. By virtue of each interval
model, model-based on-line monitoring and prediction are
performed.

Fig. 16 A data-driven system approach for production process
monitoring on safety, reliability, stable performance, and
quality prediction, where the production process could be

subject to uncertainties and disturbances

3 The perspectives of data-driven sys-
tem approaches

Data-driven control, data-driven fault diagnosis, data-
driven scheduling, and data-driven decision making present
not only a new avenue but also new challenges both in the-
ory and applications. In this section, we will explore the
possibility to establish a theoretical framework for data-
driven system methods. Three possible directions for ex-
plorations are extension, transfer and lifting, and innova-
tion.

3.1 Extension

In the four key fields of interests, many theories have
been proposed and developed. For instance, Fig. 5 shows
nine main system control theories, each has attracted many
dedicated researchers working on it. As a result, hundreds
and thousands of articles and reports have been published
on theory and applications. The research direction on data-
driven system approaches can be chosen along the line of
extension from existing system approaches.

Let us focus on system control. From Fig. 5, the nine sys-
tem control approaches could be extended to data-driven
PID, data-driven variable structure control, data-driven it-
erative learning control, and much more. A question arising
is what kinds of attributes must be held by a data-driven
control method. From discussions in preceding sections,
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we can first conclude that a data-driven control method
should be able to maximize the usage of historical or off-
line data during selecting and designing controller struc-
tures and tuning controller parameters or be able to even
directly incorporate the off-line data in the on-line control
loops. Second, a data-driven model derived from off-line
or on-line data could be another attribute of a data-driven
system controller, where the process physical model is ei-
ther not available or incomplete. Giving two examples, the
data-driven model could be as simple as a gradient that up-
dates with newly arrived on-line data, or an approximation
model linearized around an operating point using historical
data for the nominal part and on-line data for updating and
fine tuning. The main open issue concerned with extension
is the validity analysis of the extended data-driven system
approaches, such as the stability and robustness analysis
in data-driven system control. New analysis tools and sys-
tem theories dedicated to the characteristics of data and
data-driven models are necessary to support the new trend
on data-driven systems. When data are with a PDF or a
distributed reliability, we may also consider an extension
principle analogous to fuzzy set theory.

3.2 Transfer and lifting

Computational intelligence, data-mining, machine learn-
ing, and many other application oriented research areas
provide a rich source on data processing methods and algo-
rithms for the four key research fields. Also, many methods,
though originally developed for off-line data processing, can
now be applied to on-line scenarios owing to the exploita-
tion of computation-efficient algorithms and the evolution
of microprocessor technology. Fig. 17 gives a list of seven
such application oriented research areas: image processing,
acoustic signal processing, time series forecasting, biology-
inspired neural computing, bio-informatics, biomimetics,
and biometrics, whose methods and techniques could be ap-
plied to solve problems in the four key fields of interests. As
an example, Fig. 17 shows a list of subareas under biomet-
rics: modeling and recognition of face, fingerprint, hand ge-
ometry, hand veins, iris, retinal scan, signature, voice, gait,
ear canal, etc. In each subarea of biometrics, many effective
feature extraction, identification, detection, isolation, clas-
sification, and recognition methods and techniques in the
spatial, temporal, frequency, and time-frequency domains
have been developed and even commercialized. What we
need to do is to understand, digest, modify, and lift these
methods and techniques for the purpose of control, decision
making, scheduling, and fault diagnosis.

Fig. 17 Seven research areas that could be correlated to the
four key fields of interests

Meanwhile, we should lift these ready-made approaches
to fit dynamic processes in terms of the similarities in
task characteristics, for example, lifting various forecasting
methods for model-based prediction, dimension reduction
methods for model reduction, and feature analysis methods
for feature-based decision and control. As shown in Fig. 17,
the fingerprint, originally developed for off-line processing,
now is implemented in real time.

3.3 Innovation

Again let us focus on control. The methods and tech-
niques extended from existing system control approaches
would not exceed the existing scope of theory. Methods
and techniques by transfer and lifting would be applica-
tion specific or domain-knowledge dependent. Our ultimate
goal is to explore and develop a new theoretical framework
that can support universal data-driven system control ap-
proaches. A number of dedicated data-driven control meth-
ods, such as PID, iterative feedback tuning, iterative learn-
ing control, virtual reference feedback tuning, and model-
free adaptive control are results of works and efforts made
along this direction and are also introduced in this special
issue[53]. Here, we will briefly touch the issue from an-
other angle: can we define and develop fundamentals for
data-centered system control in concept, theory, and de-
signs. Considering the differences between physical-model
based and data-driven approaches, it might be necessary
to redefine system and control properties, such as shown in
Fig. 18. Taking the controllability as an example, the prac-
tical controllability could refer to the controllability index
of a data-driven model with the available off-line data at
the design phase, or with the historical data up to cer-
tain time instance. Relative controllability could refer to
the weakness of the controllability index quantified with
a numerical value based on the available data set. Con-
ditional controllability could be classified according to off-
line or on-line data under certain conditions such as being
pre-filtered with a given cutoff frequency. Ensemble con-
trollability could refer to the controllability index under
ensemble average. PDF-based controllability could be de-
fined statistically according to the PDF of the available
data set. Progressive controllability could be a dynamic
index that updates with the newly arrival of on-line data.
Likewise, we can apply the same or analogous attributes to
other system properties, seek and provide more attributes
that can better specify the data-driven system approaches
from a unique angle.

Fig. 18 Some possible redefinitions of data-driven system
control properties (The left column represents possible

data-driven attributes, and the right column represents control
system properties.)

4 Conclusion

In this paper, we briefly discussed data-driven system
problems and methods relevant to the four key fields on
control, decision making, scheduling, and fault diagnosis.
We first looked at the several data-processing methods and
technology widely used in other research areas, which could
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be applied to solve our problems. Next, we discussed the
relationship between the off-line and on-line data, as well
as the expected characteristics. Then, the data-driven and
model driven system approaches were scanned with possible
applications to the four key fields of interests. Finally, we
explored the possibility to develop a new system theoretical
framework.

In this paper, we do not intend to decide a new direction
or a new avenue for the four key fields of interests, but we
provide some primary concepts, suggest some possibilities
that might be worth to explore, and recommend some other
areas that could contribute to our problem solving.
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