2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

执行器故障不确定非线性系统最优自适应输出跟踪控制

张绍杰 吴雪 刘春生

张绍杰, 吴雪, 刘春生. 执行器故障不确定非线性系统最优自适应输出跟踪控制. 自动化学报, 2018, 44(12): 2188-2197. doi: 10.16383/j.aas.2018.c170300
引用本文: 张绍杰, 吴雪, 刘春生. 执行器故障不确定非线性系统最优自适应输出跟踪控制. 自动化学报, 2018, 44(12): 2188-2197. doi: 10.16383/j.aas.2018.c170300
ZHANG Shao-Jie, WU Xue, LIU Chun-Sheng. Optimal Adaptive Output Tracking Control for a Class of Uncertain Nonlinear Systems With Actuator Failures. ACTA AUTOMATICA SINICA, 2018, 44(12): 2188-2197. doi: 10.16383/j.aas.2018.c170300
Citation: ZHANG Shao-Jie, WU Xue, LIU Chun-Sheng. Optimal Adaptive Output Tracking Control for a Class of Uncertain Nonlinear Systems With Actuator Failures. ACTA AUTOMATICA SINICA, 2018, 44(12): 2188-2197. doi: 10.16383/j.aas.2018.c170300

执行器故障不确定非线性系统最优自适应输出跟踪控制

doi: 10.16383/j.aas.2018.c170300
基金项目: 

国家自然科学基金 61473147

详细信息
    作者简介:

    吴雪  南京航空航天大学自动化学院硕士生.2014年获得南京农业大学工学院学士学位.主要研究方向为非线性系统控制, 容错控制.E-mail:739395831@qq.com

    刘春生  南京航空航天大学自动化学院教授.2006年获得南京航空航天大学自动化学院博士学位.主要研究方向为非线性系统控制, 容错控制.E-mail:liuchsh@nuaa.edu.cn

    通讯作者:

    张绍杰  南京航空航天大学自动化学院副教授.2009年获得南京航空航天大学自动化学院博士学位.主要研究方向为非线性系统控制, 容错控制, 飞行控制.本文通信作者.E-mail:zhangsj@nuaa.edu.cn

Optimal Adaptive Output Tracking Control for a Class of Uncertain Nonlinear Systems With Actuator Failures

Funds: 

National Natural Science Foundation of China 61473147

More Information
    Author Bio:

     Master student at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. She received her bachelor degree from Nanjing Agricultural University in 2014. Her research interest covers nonlinear system control, and fault tolerant control

     Professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. She received her Ph. D. degree from the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics in 2006. Her research interest covers nonlinear system control, and fault tolerant control

    Corresponding author: ZHANG Shao-Jie  Associate professor at the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics. He received his Ph. D. degree from the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics in 2009. His research interest covers nonlinear system control, fault tolerant control, flight control. Corresponding author of this paper
  • 摘要: 本文针对一类具有执行器故障的多输入多输出(Multi-input multi-output,MIMO)不确定连续仿射非线性系统,提出了一种最优自适应输出跟踪控制方案.设计了保证系统稳定性的不确定项估计神经网络权值调整算法,仅采用评价网络即可同时获得无限时域代价函数和满足哈密顿-雅可比-贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程的最优控制输入.考虑执行器卡死和部分失效故障,设计最优自适应补偿控制律,所设计的控制律可以实现对参考输出的一致最终有界跟踪.飞行器控制仿真和对比验证表明了本文方法的有效性和优越性.
    1)  本文责任编委 刘艳军
  • 图  1  本文方法的$y_1$和$y_{r1}$

    Fig.  1  $y_1$ and $y_{r1}$ of the proposed method

    图  2  文献[13]方法的$y_1 $和$y_{r1}$

    Fig.  2  $y_1$ and $y_{r1}$ of [13]

    图  3  本文方法的$y_2 $和$y_{r2} $

    Fig.  3  $y_2$ and $y_{r2}$ of the proposed method

    图  4  文献[13]方法的$y_2 $和$y_{r2}$

    Fig.  4  $y_2$ and $y_{r2}$ of [13]

    图  5  本文和文献[13]方法的$y_1 $跟踪误差$e_1 $, $e_{11} $

    Fig.  5  Tracking errors $e_1 $, $e_{11} $ of $y_1$ by the proposed method and [13]

    图  6  本文和文献[13]方法的$y_2$跟踪误差$e_2 $, $e_{22} $

    Fig.  6  Tracking errors $e_2 $, $e_{22} $ of $y_2$ by the proposed method and [13]

    图  7  系统状态误差估计$\tilde {x}_2$

    Fig.  7  Estimating error of system state $\tilde {x}_2$

    图  8  不确定项估计神经网络权值$W_2$

    Fig.  8  Weights $W_2$ of uncertainty estimating neural network

  • [1] Tao G. Adaptive control of systems with actuator failures. In: Proceedings of the 2008 Control and Decision Conference. Yantai, China: IEEE, 2008. 53-54 http://link.springer.com/978-1-4471-3758-0
    [2] Tang X D, Tao G, Joshi S M. Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica, 2007, 43(11):1869-1883 doi: 10.1016/j.automatica.2007.03.019
    [3] Zuo Z Q, Ho D W C, Wang Y J. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica, 2010, 46(3):569-576 doi: 10.1016/j.automatica.2010.01.024
    [4] Dong L, Wang J H, Gu S S, Shi Y B, Zhao F M. Adaptive synchronization of leader-follower networked systems against communication attenuation and actuators faults. International Journal of Control, Automation and Systems, 2016, 14(6):1484-1492 doi: 10.1007/s12555-015-0275-9
    [5] Liu L J, Shen Y, Dowell E H, Zhu C H. A general H fault tolerant control and management for a linear system with actuator faults. Automatica, 2012, 48(8):1676-1682 doi: 10.1016/j.automatica.2012.05.018
    [6] Li X J, Yang G H. Robust adaptive fault-tolerant control for uncertain linear systems with actuator failures. IET Control Theory & Applications, 2012, 6(10):1544-1551 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6257091
    [7] Zhang X D, Polycarpou M M, Parisini T. Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation. Automatica, 2010, 46(2):290-299 doi: 10.1016/j.automatica.2009.11.014
    [8] Xu D Z, Jiang B, Liu H T, Shi P. Decentralized asymptotic fault tolerant control of near space vehicle with high order actuator dynamics. Journal of the Franklin Institute, 2013, 350(9):2519-2534 doi: 10.1016/j.jfranklin.2013.02.025
    [9] Mao Z H, Wang Y, Jiang B, Tao G. Fault diagnosis for a class of active suspension systems with dynamic actuators' faults. International Journal of Control, Automation and Systems, 2016, 14(5):1160-1172 doi: 10.1007/s12555-014-0552-z
    [10] Tang X D, Tao G, Joshi S M. Adaptive actuator failure compensation for parametric strict feedback systems and an aircraft application. Automatica, 2003, 39(11):1975-1982 doi: 10.1016/S0005-1098(03)00219-X
    [11] Yao X L, Tao G, Qi R Y, Jiang B Q. An adaptive actuator failure compensation scheme for a class of nonlinear MIMO systems. Journal of the Franklin Institute, 2013, 350(9):2423-2441 doi: 10.1016/j.jfranklin.2013.01.016
    [12] 张绍杰, 邱相玮, 刘春生, 胡寿松.基于MMST分组的一类MIMO非线性系统执行器故障自适应补偿控制.自动化学报, 2014, 40(11):2445-2455 http://www.aas.net.cn/CN/abstract/abstract18521.shtml

    Zhang Shao-Jie, Qiu Xiang-Wei, Liu Chun-Sheng, Hu Shou-Song. Adaptive compensation control based on MMST grouping for a class of MIMO nonlinear systems with actuator failures. Acta Automatica Sinica, 2014, 40(11):2445-2455 http://www.aas.net.cn/CN/abstract/abstract18521.shtml
    [13] Zhang S J, Qiu X W, Liu C S. Neural adaptive compensation control for a class of MIMO uncertain nonlinear systems with actuator failures. Circuits, Systems, and Signal Processing, 2014, 33(6):1971-1984 doi: 10.1007/s00034-013-9716-y
    [14] Zhang S J, Qiu X W, Jiang B, Liu C S. Adaptive actuator failure compensation control based on MMST grouping for a class of MIMO nonlinear systems with guaranteed transient performance. International Journal of Control, 2015, 88(3):593-601 doi: 10.1080/00207179.2014.971135
    [15] Bellman R E. Dynamic Programming. Princeton:Princeton University Press, 1957.
    [16] 张化光, 张欣, 罗艳红, 杨珺.自适应动态规划综述.自动化学报, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml

    Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml
    [17] Abu-Khalaf M, Lewis F L. Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach. Automatica, 2005, 41(5):779-791 doi: 10.1016/j.automatica.2004.11.034
    [18] Hanselmann T, Noakes L, Zaknich A. Continuous-time adaptive critics. IEEE Transactions on Neural Networks, 2007, 18(3):631-647 doi: 10.1109/TNN.2006.889499
    [19] Zhang H G, Wei Q L, Liu D R. An iterative adaptive dynamic programming method for solving a class of nonlinear zero-sum differential games. Automatica, 2011, 47(1):207-214 doi: 10.1016/j.automatica.2010.10.033
    [20] Lewis F L, Jagannathan S, Yeşildirek A. Neural Network Control of Robot Manipulators and Nonlinear Systems. Bristol, PA:Taylor & Francis Inc., 1998.
    [21] Murray J J, Cox C J, Lendaris G G, Saeks R. Adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(2):140-153 doi: 10.1109/TSMCC.2002.801727
    [22] Vamvoudakis K G, Lewis F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 2010, 46(5):878-888 doi: 10.1016/j.automatica.2010.02.018
    [23] Dierks T, Jagannathan S. Optimal control of affine nonlinear continuous-time systems. In: Proceedings of the 2010 American Control Conference. Baltimore, MD, USA: IEEE, 2010. 1568-1573
    [24] Zhang H G, Cui L L, Zhang X, Luo Y H. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Transactions on Neural Networks, 2011, 22(12):2226-2236 doi: 10.1109/TNN.2011.2168538
    [25] Dierks T, Jagannathan S. Online optimal control of nonlinear discrete-time systems using approximate dynamic programming. Journal of Control Theory and Applications, 2011, 9(3):361-369 doi: 10.1007/s11768-011-0178-0
    [26] Kiumarsi B, Lewis F L. Actor-critic-based optimal tracking for partially unknown nonlinear discrete-time systems. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(1):140-151 doi: 10.1109/TNNLS.2014.2358227
    [27] Zargarzadeh H, Dierks T, Jagannathan S. Adaptive neural network-based optimal control of nonlinear continuous-time systems in strict-feedback form. International Journal of Adaptive Control and Signal Processing, 2014, 28(3-5):305-324 doi: 10.1002/acs.v28.3-5
    [28] Zargarzadeh H, Dierks T, Jagannathan S. Optimal control of nonlinear continuous-time systems in strict-feedback form. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10):2535-2549 doi: 10.1109/TNNLS.2015.2441712
    [29] Sun K K, Li Y N, Tong S C. Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(1):33-44 doi: 10.1109/TSMC.2016.2586193
    [30] Shuang W F, Zhang S, Wu X, van Kampen E, Chu Q. An anti-windup fault tolerant control scheme with guaranteed transient performance for tailless flying wing aircraft. In: AIAA Guidance, Navigation, and Control Conference. Grapevine, TX, USA: AIAA, 2017-1253. 1-11
  • 加载中
图(8)
计量
  • 文章访问数:  2233
  • HTML全文浏览量:  260
  • PDF下载量:  728
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-05
  • 录用日期:  2017-10-03
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回