2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

永磁同步电机的自适应预测比例-积分-谐振电流控制

于子淞 王大志 陶冶

于子淞, 王大志, 陶冶. 永磁同步电机的自适应预测比例-积分-谐振电流控制. 自动化学报, 2018, 44(3): 471-480. doi: 10.16383/j.aas.2018.c160164
引用本文: 于子淞, 王大志, 陶冶. 永磁同步电机的自适应预测比例-积分-谐振电流控制. 自动化学报, 2018, 44(3): 471-480. doi: 10.16383/j.aas.2018.c160164
YU Zi-Song, WANG Da-Zhi, TAO Ye. Adaptive Predictive Proportional-integral-resonant Current Control for Permanent Magnet Synchronous Motors. ACTA AUTOMATICA SINICA, 2018, 44(3): 471-480. doi: 10.16383/j.aas.2018.c160164
Citation: YU Zi-Song, WANG Da-Zhi, TAO Ye. Adaptive Predictive Proportional-integral-resonant Current Control for Permanent Magnet Synchronous Motors. ACTA AUTOMATICA SINICA, 2018, 44(3): 471-480. doi: 10.16383/j.aas.2018.c160164

永磁同步电机的自适应预测比例-积分-谐振电流控制

doi: 10.16383/j.aas.2018.c160164
基金项目: 

国家自然科学基金 51467017

详细信息
    作者简介:

    于子淞 东北大学信息科学与工程学院博士研究生.2009年获得辽宁工业大学硕士学位.主要研究方向为先进控制策略在永磁同步电机中的应用.E-mail:yzsong1983@163.com

    陶冶 国家电网辽宁省电力有限公司电力调度控制中心高级工程师.2006年获得大连理工大学电气工程及其自动化系学士学位.2008年获大理工大学电气工程及其自动化系硕士学位.主要研究方向为电力系统非线性控制.E-mail:dlxtfzsys@gmail.com

    通讯作者:

    王大志 东北大学信息科学与工程学院教授.2003年获东北大学博士学位.主要研究方向为先进控制策略在电力传动中的应用.本文通信作者.E-mail:wangdazhi@ise.neu.edu.cn

Adaptive Predictive Proportional-integral-resonant Current Control for Permanent Magnet Synchronous Motors

Funds: 

National Natural Science Foundation of China 51467017

More Information
    Author Bio:

    Ph. D. candidate at the College of Information Science and Engineering, Northeastern University. He received his master degree from Liaoning University of Technology in 2009. His research interest covers application of advanced control strategy in permanent magnet synchronous motor

    Senior engineer at Electric Dispatch and Control Center, State Grid Liaoning Electric Power Supply Co. Ltd. He received his bachelor degree from School of Electrical Engineering and Automation, Dalian University of Technology in 2006. He received his master degree from Dalian University of Technology in 2008. His main research interest is nonlinear control in power system

    Corresponding author: WANG Da-Zhi Professor at the College of Information Science and Engineering, Northeastern University. He received his Ph. D. degree from Northeastern University in 2003. His research interest covers applications of advanced control strategy in power transmission. Corresponding author of this paper
  • 摘要: 考虑数字控制系统一个采样周期输入延时和驱动器功率管非线性特性的影响,为增强永磁同步电机(Permanent magnet synchronous motor,PMSM)电流环稳定性和提高电流控制精度,提出一种自适应预测比例-积分-谐振控制(Adaptive predictive proportional-integral-resonant,APPI-RES)策略.该方法能够在电机电阻和电感参数不确定的条件下,预测电流控制误差和未知周期电压扰动,将所得预测量执行反馈控制,实现了对系统输入延时和相电流谐波的有效补偿.最后,通过仿真分析验证了所提控制策略的有效性.
    1)  本文责任编委 梅生伟
  • 图  1  采用APPI-RES电流控制器的PMSM驱动系统框图

    Fig.  1  Block diagram of PMSM driving system using APPI-RES current controller

    图  2  相电流(PI)

    Fig.  2  Phase currents (PI)

    图  3  相电流频谱(PI)

    Fig.  3  Frequency spectrum of phase current (PI)

    图  4  相电流(PI-RES)

    Fig.  4  Phase currents (PI-RES)

    图  5  相电流频谱(PI-RES)

    Fig.  5  Frequency spectrum of phase current (PI-RES)

    图  6  相电流(APPI-RES)

    Fig.  6  Phase currents (APPI-RES)

    图  7  相电流频谱(APPI-RES)

    Fig.  7  Frequency spectrum of phase current (APPI-RES)

    图  8  相电流(PI-RES)

    Fig.  8  Phase currents (PI-RES)

    图  9  转速(PI-RES)

    Fig.  9  Speed (PI-RES)

    图  10  转矩(PI-RES)

    Fig.  10  Torque (PI-RES)

    图  11  $d-q$轴电压(PI-RES)

    Fig.  11  Voltages of $d-q$ axises (PI-RES)

    图  12  相电流(APPI-RES)

    Fig.  12  Phase currents (APPI-RES)

    图  13  转矩(APPI-RES)

    Fig.  13  Torque (APPI-RES)

    图  14  转速(APPI-RES)

    Fig.  14  Speed (APPI-RES)

    图  16  $q$轴电流误差及其预测值(APPI-RES)

    Fig.  16  Current error and its predictive value of $q$ axis (APPI-RES)

    图  15  $d-q$轴电压(APPI-RES)

    Fig.  15  Voltages of $d-q$ axises (APPI-RES)

  • [1] Chou M C, Liaw C M. Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel. IEEE Transactions on Industrial Electronics, 2011, 42(10):4693-4707 http://ieeexplore.ieee.org/document/5699362/
    [2] Abdel-Rady Y, Mohamed I. A newly designed instantaneous-torque control of direct-drive PMSM servo actuator with improved torque estimation and control characteristics. IEEE Transactions on Industrial Electronics, 2007, 54(5):2864-2873 doi: 10.1109/TIE.2007.901356
    [3] EL-Refaie A M. Fractional-slot concentrated-windings synchronous permanent magnet machines:opportunities and challenges. IEEE Transactions on Industrial Electronics, 2010, 57(1):107-121 doi: 10.1109/TIE.2009.2030211
    [4] Jung J W, Leu V Q, Do T D, Kim E K, Choi H H. Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Transactions on Power Electronics, 2015, 30(2):900-908 doi: 10.1109/TPEL.2014.2311462
    [5] Chang S H, Chen P Y, Ting Y H, Hung S W. Robust current control-based sliding mode control with simple uncertainties estimation in permanent magnet synchronous motor drive systems. IET Electric Power Applications, 2010, 4(6):441-450 doi: 10.1049/iet-epa.2009.0146
    [6] 牛里, 杨明, 王庚, 徐殿国.基于无差拍控制的永磁同步电机鲁棒电流控制算法研究.中国电机工程学报, 2013, 33(15):78-85 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201315009&dbname=CJFD&dbcode=CJFQ

    Niu Li, Yang Ming, Wang Geng, Xu Dian-Guo. Research on the robust current control algorithm of permanent magnet synchronous motor based on deadbeat control principle. Proceedings of the CSEE, 2013, 33(15):78-85 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgdc201315009&dbname=CJFD&dbcode=CJFQ
    [7] Errouissi R, Ouhrouche M, Chen W H, Trzynadlowski A. Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function. IEEE Transactions on Industrial Electronics, 2012, 59(7):2849-2858 doi: 10.1109/TIE.2011.2157276
    [8] 孔小兵, 刘向杰.永磁同步电机高效非线性模型预测控制.自动化学报, 2014, 40(9):1958-1966 http://www.aas.net.cn/CN/abstract/abstract18466.shtml

    Kong Xiao-Bing, Liu Xiang-Jie. Efficient nonlinear model predictive control for permanent magnet synchronous motor. Acta Automatica Sinica, 2014, 40(9):1958-1966 http://www.aas.net.cn/CN/abstract/abstract18466.shtml
    [9] 王恩德, 黄声华.表贴式永磁同步电机伺服系统电流环设计.中国电机工程学报, 2012, 32(33):82-88 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201233011.htm

    Wang En-De, Huang Sheng-Hua. Current Regulator design for surface permanent magnet synchronous motor servo systems. Proceedings of the CSEE, 2012, 32(33):82-88 http://www.cnki.com.cn/Article/CJFDTotal-ZGDC201233011.htm
    [10] Escobar G, Hernandez-Briones P G, Martinez P R, Hernandez-Gomez M, Torres-Olguin R E. A repetitive-based controller for the compensation of 6l ±1 harmonic components. IEEE Transactions on Industrial Electronics, 2008, 55(8):3150-3158 doi: 10.1109/TIE.2008.921200
    [11] 匡敏驰, 朱纪洪, 吉敬华.航空油泵电机的相电流畸变纠正控制.控制与决策, 2015, 30(5):899-904 http://www.cnki.com.cn/Article/CJFDTotal-KZYC201505019.htm

    Kuang Min-Chi, Zhu Ji-Hong, Ji Jing-Hua. Phase current distortion correction control for aerospace fuel pump motor. Control and Decision, 2015, 30(5):899-904 http://www.cnki.com.cn/Article/CJFDTotal-KZYC201505019.htm
    [12] 李毅拓, 陆海峰, 瞿文龙, 盛爽.基于谐振调节器的永磁同步电机电流谐波抑制方法.中国电机工程学报, 2014, 34(3):423-430 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_zgdjgcxb201403035

    Li Yi-Tuo, Lu Hai-Feng, Qu Wen-Long, Sheng Shuang. A permanent magnet synchronous motor current suppression method based on resonant controllers. Proceedings of the CSEE, 2014, 34(3):423-430 http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_zgdjgcxb201403035
    [13] McGrath B P, Parker S G, Holmes D G. High-performance current regulation for low-pulse-ratio inverters. IEEE Transactions on Industry Applications, 2013, 49(1):149-158 doi: 10.1109/TIA.2012.2229252
    [14] Vidal A, Freijedo F D, Yepes A G, Fernandez-Comesana P, Malvar J, Lopez O, Doval-Gandoy J. Assessment and optimization of the transient response of proportional-resonant current controllers for distributed power generation systems. IEEE Transactions on Industrial Electronics, 2013, 60(4):1367-1383 doi: 10.1109/TIE.2012.2188257
    [15] Yim J S, Sul S K, Bae B H, Patel N R, Hiti S. Modified current control schemes for high-performance permanent-magnet ac drives with low sampling to operating frequency ratio. IEEE Transactions on Industry Applications, 2009, 45(2):763-771 doi: 10.1109/TIA.2009.2013600
    [16] Yepes A G, Vidal A, Malvar J, López O, Doval-Gandoy J. Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines. IEEE Transactions on Power Electronics, 2014, 29(6):3041-3054 doi: 10.1109/TPEL.2013.2276059
    [17] Franklin G F, Powell J D, Emami-Naeini A[著], 朱齐丹, 张丽珂, 原新[译]. 动态系统的反馈控制. 第4版. 北京: 电子工业出版社, 2004. 401-408

    Franklin G F, Powell J D, Emami-Naeini A[Author], Zhu Qi-Dan, Zhang Li-Ke, Yuan Xin[Translator]. Feedback Control of Dynamic Systems (Fourth Edition). Beijing: Publishing House of Electronics Industry, 2004. 401-408
    [18] Léchappé V, Moulay E, Plestan F, Glumineau A, Chriette A. New predictive scheme for the control of LTI systems with input delay and unknown disturbances. Automatica, 2014, 52:179-184 https://www.sciencedirect.com/science/article/pii/S0005109814005342
  • 加载中
图(16)
计量
  • 文章访问数:  2215
  • HTML全文浏览量:  255
  • PDF下载量:  831
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-25
  • 录用日期:  2017-04-18
  • 刊出日期:  2018-03-20

目录

    /

    返回文章
    返回