2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

容错控制系统鲁棒H和自适应补偿设计

金小峥 杨光红 常晓恒 车伟伟

金小峥, 杨光红, 常晓恒, 车伟伟. 容错控制系统鲁棒H∞和自适应补偿设计. 自动化学报, 2013, 39(1): 31-42. doi: 10.3724/SP.J.1004.2013.00031
引用本文: 金小峥, 杨光红, 常晓恒, 车伟伟. 容错控制系统鲁棒H和自适应补偿设计. 自动化学报, 2013, 39(1): 31-42. doi: 10.3724/SP.J.1004.2013.00031
JIN Xiao-Zheng, YANG Guang-Hong, CHANG Xiao-Heng, CHE Wei-Wei. Robust Fault-tolerant H∞ Control with Adaptive Compensation. ACTA AUTOMATICA SINICA, 2013, 39(1): 31-42. doi: 10.3724/SP.J.1004.2013.00031
Citation: JIN Xiao-Zheng, YANG Guang-Hong, CHANG Xiao-Heng, CHE Wei-Wei. Robust Fault-tolerant H Control with Adaptive Compensation. ACTA AUTOMATICA SINICA, 2013, 39(1): 31-42. doi: 10.3724/SP.J.1004.2013.00031

容错控制系统鲁棒H和自适应补偿设计

doi: 10.3724/SP.J.1004.2013.00031
详细信息
    通讯作者:

    金小峥

Robust Fault-tolerant H Control with Adaptive Compensation

  • 摘要: 通过设计动态输出反馈控制策略研究线性时不变系统执行器故障下的鲁棒自适应容错H∞控制问题. 结合自适应技术和线性矩阵不等式(Linear matrix inequalities, LMI)技术, 设计一个控制策略同时实现系统的故障补偿控制和性能优化控制. 在设计中, 提出由自适应律在线调节控制增益方程补偿未知执行器故障和摄动; 并设计一个基于模式依赖李亚普诺夫方程的LMI条件解出控制参数及次优H∞性能. 所设计的动态输出反馈控制器可以处理一般执行器卡死故障, 并得到更少保守性的H∞性能指标. 此外, 一个更具挑战性的问题, 即通过自适应机构补偿故障致使系统多少性能退化得到论证. 所提方法的有效性由一个解耦线性化动态飞行器系统仿真验证.
  • [1] Veillette R J, Medanic J B, Perkins W R. Design of reliable control systems. IEEE Transactions on Automatic Control, 1992, 37(3): 290-304[2] Yang G H, Wang J L, Soh Y C. Reliable H_∞ controller design for linear systems. Automatica, 2001, 37(5): 717-725[3] Feng L, Wang J L, Poh E, Liao F. Reliable H∞ aircraft flight controller design against faults with state/output feedback. In: Proceedings of the 2005 American Control Conference. Portland, OR, USA: IEEE, 2005. 2664-2669[4] Wu H N, Zhang H Y. Reliable H_∞ fuzzy control for continuous-time nonlinear systems with actuator failures. IEEE Transactions on Fuzzy Systems, 2006, 14(5): 609-618[5] Zhang K, Jiang B, Staroswiecki M. Dynamic output feedback-fault tolerant controller design for Takagi-Sugeno fuzzy systems with actuator faults. IEEE Transactions on Fuzzy Systems, 2010, 18(1): 194-201[6] Ye D, Yang G H. Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Transactions on Control Systems Technology, 2006, 14(6): 1088-1096[7] Jiang B, Gao Z F, Shi P, Xu Y F. Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models. IEEE Transactions on Fuzzy Systems, 2010, 18(5): 1000-1007[8] Hu Q. Robust adaptive sliding-mode fault-tolerant control with L2-gain performance for flexible spacecraft using redundant reaction wheels. IET Control Theory Applications, 2010, 4(6): 1055-1070[9] Tao G, Joshi S M. Adaptive output feedback compensation of variant actuator failures. In: Proceedings of the 2005 American Control Conference. Portland, OR, USA: IEEE, 2005. 4862-4867[10] Tang X D, Tao G, Joshi S M. Adaptive actuator failure compensation for nonlinear MIMO systems with an aircraft control application. Automatica, 2007, 43(11): 1869-1883[11] Liu Y, Tang X D, Tao G, Joshi S M. Adaptive compensation of aircraft actuation failures using an engine differential model. IEEE Transactions on Control Systems Technology, 2008, 16(5): 971-982[12] Tao G, Joshi S M, Ma X L. Adaptive state feedback and tracking control of systems with actuator failures. IEEE Transactions on Automatic Control, 2001, 46(1): 78-95[13] Jin X Z, Yang G H. Robust adaptive fault-tolerant compensation control with actuator failures and bounded disturbances. Acta Automatica Sinica, 2009, 35(3): 305-309[14] Yang G H, Ye D. Adaptive fault-tolerant H_∞ control via dynamic output feedback for linear systems against actuator faults. In: Proceedings of the 2006 Conference on Decision and Control. San Diego, CA, USA: IEEE, 2006. 3524-3529[15] Yang G H, Ye D. Reliable H_∞ control of linear systems with adaptive mechanism. IEEE Transactions on Automatic Control, 2010, 55(1): 242-247[16] Fan L L, Song Y D. Fault-tolerant control and disturbance attenuation of a class of nonlinear systems with actuator and component failures. Acta Automatica Sinica, 2011, 37(5): 623-628[17] Chen W, Chowdhury F N. Analysis and detection of incipient faults in post-fault systems subject to adaptive fault-tolerant control. International Journal of Adaptive Control and Signal Processing, 2008, 22(9): 815-832[18] Boskovic J D, Mehra R K. A decentralized fault-tolerant control system for accommodation of failures in higher-order flight control actuators. IEEE Transactions on Control Systems Technology, 2010, 18(5): 1103-1115[19] Maki M, Jiang J, Hagino K. A stability guaranteed active fault-tolerant control system against actuator failures. International Journal of Robust and Nonlinear Control, 2004, 14(12): 1061-1077[20] Mao Z H, Jiang B, Shi P. Fault-tolerant control for a class of nonlinear sampled-data systems via a Euler approximate observer. Automatica, 2010, 46(11): 1852-1859[21] Blanke M, Kinnaert M, Lunze J, Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin: Springer-Verlag, 2006[22] Ding F, Liu X P. Auxiliary model-based stochastic gradient algorithm for multivariable output error systems. Acta Automatica Sinica, 2010, 36(7): 993-998[23] Ding F. Several multi-innovation identification methods. Digital Signal Processing, 2010, 20(4): 1027-1039[24] Wang D Q, Ding F. Least squares based and gradient based iterative identification for Wiener nonlinear systems. Signal Processing, 2011, 91(5): 1182-1189[25] Ding J, Han L L, Chen X M. Time series AR modeling with missing observations based on the polynomial transformation. Mathematical and Computer Modelling, 2010, 51(5-6): 527-536[26] Adams R J, Buffington J M, Sparks A G, Banda S S. Robust Multivariable Flight Control. London: Springer-Verlag, 1994[27] de Oliveira P J, Oliveira R C L F, Leite V J S, Montagner V F, Peres P L D. H_∞ guaranteed cost computation by means of parameter-dependent Lyapunov functions. Automatica, 2004, 40(6): 1053-1061[28] He Y, Wu M, She J H. Improved bounded-real-lemma representation and H_∞ control of systems with polytopic uncertainties. IEEE Transactions on Circuits and Systems II: Express Briefs, 2005, 52(7): 380-383[29] Ioannou P A, Sun J. Robust Adaptive Control. Englewood Cliffs, NJ: Prentice-Hall, 1996[30] Geromel J C, Korogui R H. Analysis and synthesis of robust control systems using linear parameter dependent Lyapunov functions. IEEE Transactions on Automatic Control, 2006, 51(12): 1984-1989
  • 加载中
计量
  • 文章访问数:  2060
  • HTML全文浏览量:  43
  • PDF下载量:  1264
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-24
  • 修回日期:  2012-01-10
  • 刊出日期:  2013-01-20

目录

    /

    返回文章
    返回