2.765

2022影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离散自适应重复控制: 收敛性分析与实现

孙明轩 余林江 何海港

孙明轩, 余林江, 何海港. 离散自适应重复控制: 收敛性分析与实现. 自动化学报, 2013, 39(4): 400-406. doi: 10.3724/SP.J.1004.2013.00400
引用本文: 孙明轩, 余林江, 何海港. 离散自适应重复控制: 收敛性分析与实现. 自动化学报, 2013, 39(4): 400-406. doi: 10.3724/SP.J.1004.2013.00400
SUN Ming-Xuan, YU Lin-Jiang, HE Hai-Gang. Discrete Adaptive Repetitive Control: Convergence Analysis and Implementation. ACTA AUTOMATICA SINICA, 2013, 39(4): 400-406. doi: 10.3724/SP.J.1004.2013.00400
Citation: SUN Ming-Xuan, YU Lin-Jiang, HE Hai-Gang. Discrete Adaptive Repetitive Control: Convergence Analysis and Implementation. ACTA AUTOMATICA SINICA, 2013, 39(4): 400-406. doi: 10.3724/SP.J.1004.2013.00400

离散自适应重复控制: 收敛性分析与实现

doi: 10.3724/SP.J.1004.2013.00400
详细信息
    通讯作者:

    孙明轩

Discrete Adaptive Repetitive Control: Convergence Analysis and Implementation

  • 摘要: 针对周期已知情形下的离散周期时变系统, 提出一种自适应重复控制方法, 参数估计采用带死区修正的重复学习投影算法. 关键技术引理在分析离散自适应控制系统时起到了关键作用, 通过推广这一引理, 文中给出重复域关键技术引理, 用于证明离散自适应重复控制系统的稳定性和收敛性. 理论分析表明, 系统的输入和输出信号均有界; 且当周期数趋于足够大时, 跟踪误差收敛于一邻域中, 其半径为干扰的界. 在直线电机实验装置上的应用结果验证了 所提出重复控制方法的有效性.
  • [1] Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control. Englewood Cliffs, New Jersey: Prentice-Hall, 1984[2] Astrm K J, Wittenmark B. Adaptive Control. Boston: Addison-Wesley, 1989[3] Chen H F, Guo L. Identification and Stochastic Adaptive Control. Boston: Birkhauser, 1991[4] Landau Y D, Landau I D, Lozano R, M'Saad M. Adaptive Control. London: Springer-Verleg, 1998[5] Hara S, Yamamoto Y, Omata T, Nakano M. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control, 1988, 33(7): 659-668[6] Tomizuka M, Tsao T C, Chew K K. Analysis and synthesis of discrete-time repetitive controllers. ASME Journal of Dynamic Systems, Measurement and Control, 1989, 111(3): 353-358[7] Sadegh N, Horowitz R, Kao W W, Tomizuka M. A unified approach to the design of adaptive and repetitive controllers for robotic manipulators. ASME Journal of Dynamic Systems Measurement Control, 1990, 112(4): 618-629[8] Messner W, Horowitz R, Kao W W, Boals M. A new adaptive learning rule. IEEE Transactions on Automatic Control, 1991, 36(2): 188-197[9] Dixon W E, Zergeroglu E, Dawson D M, Costic B T. Repetitive learning control: a Lyapunov-based approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32(4): 538-545[10] Qu Z H, Xu J X. Asymptotic learning control for a class of cascaded nonlinear uncertain systems. IEEE Transactions on Automatic Control, 2002, 47(8): 1369-1376[11] Xu J X. A new periodic adaptive control approach for time-varying parameters with known periodicity. IEEE Transactions on Automatic Control, 2004, 49(4): 579-583[12] Sun M, Ge S S. Adaptive repetitive control for a class of nonlinearly parametrized systems. IEEE Transactions on Automatic Control, 2006, 51(10): 1684-1688[13] Marino R, Tomei P. An iterative learning control for a class of partially feedback linearizable systems. IEEE Transactions on Automatic Control, 2009, 54(8): 1991-1996[14] Chi R H, Hou Z S, Xu J X. Adaptive ILC for a class of discrete-time systems with iteration-varying trajectory and random initial condition. Automatica, 2008, 44(8): 2207-2213[15] Abidi K, Xu J X. A discrete-time periodic adaptive control approach for time-varying parameters with known periodicity. IEEE Transactions on Automatic Control, 2008, 53(2): 575-581[16] Li X D, Xiao T F, Zheng H X. Adaptive discrete-time iterative learning control for nonlinear multiple input multiple output systems with iteration-varying initial error and reference trajectory. IET Control Theory and Applications, 2011, 5(9): 1131-1139[17] Sun M X, He X X. Iterative learning identification and control of discrete time-varying systems. In: Proceedings of the 26th Chinese Control Conference. Hunan, China: IEEE, 2007. 520-524[18] Sun M, Liu X, He H. Adaptive iterative learning control for SISO discrete time-varying systems. In: Proceedings of the 12th International Conference on Control, Automation, Robotics and Vision, Guangzhou, China, 2012[19] Hua G F, Sun M X. Learning identification and control of a class of discrete periodic systems. In: Proceedings of the 4th IEEE Conference on Industrial Electronics and Applications. Xi'an, China: IEEE, 2009. 6-11[20] Chen Wei-Sheng, Wang Yuan-Liang, Li Jun-Min. Adaptive learning control for nonlinearly parameterized systems with periodically time-varying delays. Acta Automatica Sinica, 2008, 34(12): 1556-1560(陈为胜, 王元亮, 李俊民. 周期时变时滞非线性参数化系统的自适应学习控制. 自动化学报, 2008, 34(12): 1556-1560)[21] Chi R H, Sui S L, Hou Z S. A new discrete-time adaptive ILC for nonlinear systems with time-varying parametric uncertainties. Acta Automatica Sinica, 2008, 34(7): 805-808[22] Sun M X, Xie H Y, Wang H. Switching-function dynamics designs for uncertain variable structure systems with repetitive control. International Journal of Control, 2011, 84(7): 1196-1208[23] Sun Ming-Xuan, Fan Wei-Yun, Wang Hui. Discrete sliding mode repetitive control with novel reaching law. Acta Automatica Sinica, 2011, 37(10): 1213-1221(孙明轩, 范伟云, 王辉. 用于离散滑模重复控制的新型趋近律. 自动化学报, 2011, 37(10): 1213-1221)[24] Lee J W, Dullerud G E. Uniform stabilization of discrete-time switched and Markovian jump linear systems. Automatica, 2006, 42(2): 205-218
  • 加载中
计量
  • 文章访问数:  1521
  • HTML全文浏览量:  38
  • PDF下载量:  880
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-23
  • 修回日期:  2012-10-22
  • 刊出日期:  2013-04-20

目录

    /

    返回文章
    返回