2.793

2018影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性系统输出反馈自适应扰动抑制

尚芳 刘允刚 张桂青 张承慧

尚芳, 刘允刚, 张桂青, 张承慧. 一类非线性系统输出反馈自适应扰动抑制. 自动化学报, 2011, 37(12): 1530-1536. doi: 10.3724/SP.J.1004.2011.01530
引用本文: 尚芳, 刘允刚, 张桂青, 张承慧. 一类非线性系统输出反馈自适应扰动抑制. 自动化学报, 2011, 37(12): 1530-1536. doi: 10.3724/SP.J.1004.2011.01530
SHANG Fang, LIU Yun-Gang, ZHANG Gui-Qing, ZHANG Cheng-Hui. Adaptive Disturbance Attenuation by Output Feedback for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2011, 37(12): 1530-1536. doi: 10.3724/SP.J.1004.2011.01530
Citation: SHANG Fang, LIU Yun-Gang, ZHANG Gui-Qing, ZHANG Cheng-Hui. Adaptive Disturbance Attenuation by Output Feedback for a Class of Nonlinear Systems. ACTA AUTOMATICA SINICA, 2011, 37(12): 1530-1536. doi: 10.3724/SP.J.1004.2011.01530

一类非线性系统输出反馈自适应扰动抑制


DOI: 10.3724/SP.J.1004.2011.01530
详细信息
    通讯作者: 尚芳 山东建筑大学信息与电气工程学院讲师.主要研究方向为非线性系统控制设计和自适应控制理论. E-mail: shangfang929@163.com

Adaptive Disturbance Attenuation by Output Feedback for a Class of Nonlinear Systems

More Information
  • 摘要: 研究了一类依赖于不可量测状态增长非线性系统的输出反馈自适应扰动抑制问题. 与现有文献不同, 所研究的系统具有更多的未知参数, 尤其是不确定控制系数. 为了解决该 问题, 引入了动态高增益K-滤波器, 进而构造了基于K-滤波器的状态观测器. 在输出反馈控制器的设计过程中, 引入了待定设计参数, 增加了设计的自由度. 结果表明, K-滤 波器的动态增益和设计参数的恰当选择可以保证闭环系统的全局稳定性, 从而实现系统 L2-增益意义的扰动抑制.
  • [1] Qian C J, Lin W. Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Transactions on Automatic Control, 2002, 47(10): 1710-1715[2] Praly L, Jiang Z P. Linear output feedback with dynamic high gain for nonlinear systems. Systems and Control Letters, 2004, 53(2): 107-116[3] Liu Y G. Global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and unmeasured states dependent growth. Sciences in China, Series F, 2008, 51(10): 1508-1520[4] Shang Fang, Liu Yun-Gang. Output-feedback control for a class of uncertain nonlinear systems with linearly unmeasured states dependent growth. Acta Automatica Sinica, 2009, 35(3): 272-280[5] Shang F, Liu Y G, Zhang C H. Adaptive output feedback control for a class of planar nonlinear systems. Asian Journal of Control, 2009, 11(5): 578-586[6] Krstić M, Kanellakopoulos I, Kokotović P V. Nonlinear and Adaptive Control Design. New York: John Wiley and Sons, 1995[7] Gong Q, Qian C J. Global practical tracking of a class of nonlinear systems by output feedback. Automatica, 2007, 43(1): 184-189[8] Shang Fang, Liu Yun-Gang, Zhang Cheng-Hui. New results on adaptive tracking by output feedback for a class of uncertain nonlinear systems. Control Theory and Applications, 2010, 27(6): 721-730 (尚芳, 刘允刚, 张承慧. 一类不确定非线性系统自适应输出反馈跟踪控制的新结果. 控制理 论与应用, 2010, 27(6): 721-730)[9] Jiang Z P. Global output feedback control with disturbance attenuation for minimum-phase nonlinear systems. Systems and Control Letters, 2000, 39(3): 155-164[10] Lin W, Qian C J, Huang X Q. Disturbance attenuation of a class of non-linear systems via output feedback. International Journal of Robust and Nonlinear Control, 2003, 13(15): 1359-1369[11] Ito H, Jiang Z P. Robust disturbance attenuation of nonlinear systems using output feedback and state-dependent scaling. Automatica, 2004, 40(9): 1621-1628[12] Shang Fang, Liu Yun-Gang, Zhang Cheng-Hui. Disturbance attenuation by output feedback for a class of uncertain nonlinear systems. Journal of Shandong University(Engineering Science), 2010, 40(1): 19-27 (尚芳, 刘允刚, 张承慧. 一类不确定非线性系统输出反馈扰动抑制. 山东大学学报(工学版), 2010, 40(1): 19-27)[13] Marino R, Tomei P. Nonlinear Control Design: Geometric, Adaptive and Robust. Hertfordshire: Prentice Hall, 1995[14] Shang Fang, Liu Yun-Gang. Adaptive output-feedback stabilization for a class of uncertain nonlinear systems. Acta Automatica Sinica, 2010, 36(1): 92-100[15] Hale J K. Ordinary Differential Equations(Second Edition). Huntington: Krieger, 1980[16] Khalil H K. Nonlinear Systems(Third Edition). New Jersey: Prentice Hall, 2002[17] Min Ying-Ying, Liu Yun-Gang. Babalat lemma and its application in analysis of system stability. Journal of Shandong University(Engineering Science), 2007, 37(1): 51-56 (闵颖颖, 刘允刚. Babalat引理及其在系统稳定性分析中的应用. 山东大学学报(工学版), 2007, 37(1): 51-56)
  • 加载中
计量
  • 文章访问数:  1652
  • HTML全文浏览量:  0
  • PDF下载量:  901
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-05
  • 修回日期:  2011-06-29
  • 刊出日期:  2011-12-20

一类非线性系统输出反馈自适应扰动抑制

doi: 10.3724/SP.J.1004.2011.01530
    通讯作者: 尚芳 山东建筑大学信息与电气工程学院讲师.主要研究方向为非线性系统控制设计和自适应控制理论. E-mail: shangfang929@163.com

摘要: 研究了一类依赖于不可量测状态增长非线性系统的输出反馈自适应扰动抑制问题. 与现有文献不同, 所研究的系统具有更多的未知参数, 尤其是不确定控制系数. 为了解决该 问题, 引入了动态高增益K-滤波器, 进而构造了基于K-滤波器的状态观测器. 在输出反馈控制器的设计过程中, 引入了待定设计参数, 增加了设计的自由度. 结果表明, K-滤 波器的动态增益和设计参数的恰当选择可以保证闭环系统的全局稳定性, 从而实现系统 L2-增益意义的扰动抑制.

English Abstract

参考文献 (1)

目录

    /

    返回文章
    返回